НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ ТЕЛА
С понятием о напряженном состоянии в точке тела мы уже встречались ранее. Так, в первой беседе мы обращали внимание Читателя на то, что нельзя говорить о напряжении в точке тела, не указывая положение площадки, на которой оно возникает, поскольку на различных площадках, проходящих через данную точку тела, могут возникнуть разные напряжения. Изучали мы напряженное состояние и в точке центрально растянутого (сжатого) стержня. Ввиду того, что понятие о напряженном состоянии в точке тела является одним из ключевых понятий в курсе сопротивления материалов, считаем необходимым в этой беседе остановиться на этом вопросе более подробно. 6.1. Что понимается под напряженным состоянием в точке тела? Напряженным состоянием (НС) в точке тела называют совокупность нормальных и касательных напряжений, возникающих на всевозможных площадках, проходящих через данную точку. 6.2. Какова конечная цель исследования НС в точке тела? Для оценки прочности материала нас в первую очередь интересуют наибольшие значения нормальных и касательных напряжений, возникающих в данной точке тела. В дальнейшем мы установим, что для их определения нам необходимо знать нормальные и касательные напряжения на любых трех взаимно перпендикулярных площадках, проходящих через данную точку тела. Кроме того, нам необходимо знать и направления «действия» этих наибольших нормальных и касательных напряжений или, иными словами, на каких площадках, проходящих через данную точку тела, они возникают. Здесь и далее кавычки нами используются потому, что внутренние усилия не могут действовать, поскольку не являются активными силами. 6.3. С чего начинается исследование НС в некоторой точке тела? Оно начинается с того, что в окрестности исследуемой точки, например точки К (рис. 6.1), из нагруженного тела, находящегося в равновесии, мысленно вырезается элементарный параллелепипед со сторонами
6.4. Какие различают виды НС в точке тела? В дальнейшем мы увидим, что в окрестности любой точки деформированного твердого тела всегда можно выделить элементарный параллелепипед, ориентированный в пространстве таким образом, что по его граням будут возникать только нормальные напряжения. В зависимости от того, испытывает ли такой параллелепипед «растяжение» («сжатие») в одном, в двух или в трех направлениях, различают следующие виды НС (рис. 6.2).
В задачах сопротивления материалов наиболее часто встречается плоское НС. Его характерным признаком является полное отсутствие нормальных и касательных напряжений на двух параллельных гранях элементарного параллелепипеда. Именно этому случаю НС мы и уделим в дальнейшем основное внимание. В частности, мы будем полагать, что напряжения не возникают на гранях элементарного параллелепипеда с нормалью x.Тогда вместо объемного параллелепипеда, с целью упрощения, мы будем на рисунках показывать плоский элемент, то есть проекцию параллелепипеда на плоскость Объемное НС в курсе сопротивления материалов практически не изучается. 6.5. Какие правила знаков для нормальных и касательных напряжений принимаются в сопротивлении материалов при изучении плоского НС? Установим следующие правила знаков. Для нормальных напряжений оно формулируется очень просто: нормальное напряжение, соответствующее растяжению, считается положительным, а сжатию – отрицательным. Несколько сложнее выглядит правило для касательных напряжений. Касательное напряжение будем считать положительным, если одновременно выполняются (или одновременно не выполняются) следующие два условия: · во-первых, направление напряжения совпадает с положительным направлением соответствующей координатной оси; · во-вторых, внешняя нормаль к площадке, на которой оно возникает, направлена в ту же сторону, что и другая соответствующая координатная ось.
Отметим, что при анализе НС в некоторой точке тела нормальные 6.6. Как формулируется закон парности касательных напряжений? Элементарный параллелепипед должен находиться в равновесии. В частности, он не должен вращаться вокруг оси x, проходящей через точку К (см. рис. 6.3), поэтому суммарный момент всех сил, возникающих по его граням, относительно этой оси должен быть равен нулю:
В формуле (6.1) в скобки заключены соответствующие силы, а их плечи указаны за скобками. После элементарных упрощений выражения (6.1) найдем:
Соотношение (6.2) и называется законом парности касательных напряжений: на любых двух взаимно перпендикулярных площадках касательные напряжения, направленные по перпендикуляру к линии пересечения этих площадок, равны по величине. При этом касательные напряжения либо сходятся к линии пересечения площадок, либо расходятся от нее.
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1380)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |