Проверка качества уравнения регрессии
Регрессионный анализ позволяет определить оценки коэффициентов регрессии. Но они не позволяют сдеалть вывод, насколько точно эмпирическое уравнение регресси соответствует уравнению для всей генеральной совокупности, насколько близки оценки Как следует из соотношения (1.6), значения Доказано, что для получения по МНК наилучших результатов необходимо, чтобы выполнялся ряд предпосылок относительно случайного отклонения (предпосылки Гаусса-Маркова): 1. Математическое ожидание случайного отклонения 2. Дисперсия случайных отклонений 3. Случайные отклонения 4. Случайное отклонение должно быть независимо от объясняющих переменных. 5. Модель является линейной относительно параметров. Теорема Гаусса-Маркова. Если предпосылки 1-5 выполнены, то оценки, полученные по МНК, обладают следующими свойствами: 1. Оценки являются несмещенными, т.е. 2. Оценки состоятельны, так как дисперсия оценок параметров при возрастании числа наблюдений 3. Оценки эффективны, т.е. они имеют наименьшую дисперсию по сравнению с любыми другими оценками данных параметров, линейными относительно величин Если предпосылки 2 и 3 нарушены, то свойства несмещенности и состоятельности сохраняются, но свойство эффективности – нет.
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (481)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |