УСКОРЕНИЯ ТОЧЕК ТЕЛА ПРИ ВРАЩЕНИИ ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ
Формулу для ускорения какой-либо точки Формулу для ускорения какой-либо точки тела М можно получить путем дифференцирования по времени вектора скорости, учитывая, что скорость вычисляют по формуле (97). Выполняя это дифференцирование, получаем
Так как
Формулу (103) часто называют формулой Ривальса. Часть общего ускорения точки
называют вращательным ускорением, а другую часть
осестремительным ускорением. Следовательно, формула (103) примет вид
т.е. ускорение точки тела, вращающегося вокруг неподвижной точки, равно векторной сумме вращательного и осестремителъного ускорений. В общем случае вращательное и осестремительное ускорения не перпендикулярны; следовательно, модуль ускорения а вычисляют как диагональ параллелограмма по формуле
Рассмотрим вращательное и осестремительное ускорения по отдельности. Вращательное ускорение вычисляют по формуле (104), аналогичной формуле (97) для скорости точки. Только здесь вместо угловой скорости
где
где Из (108) следует, что вектор углового» ускорения Модуль осестремительного ускорения
т. к. угловая скорость Осестремительное ускорение направлено по перпендикуляру к мгновенной оси, опущенному из точки, для которой оно вычисляется, т.е. по отрезку
В случае вращения твердого тела вокруг неподвижной оси угловое ускорение и угловая скорость направлены по этой оси; тогда расстояния Таким образом, вращение тела вокруг неподвижной точки можно рассматривать как более общее движение, чем вращение тела вокруг неподвижной оси.
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (960)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |