Мегаобучалка Главная | О нас | Обратная связь


Определение ускорения при координатном способе задания движения



2015-11-27 2258 Обсуждений (0)
Определение ускорения при координатном способе задания движения 4.33 из 5.00 6 оценок




Вектор ускорения точки в проекции на оси получаем:

, ,

или

, , ,

т.е. проекция ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул

;

, , ,

где , , - углы, образуемые вектором ускорения с координатными осями.

Пример 3. Движение точки задано уравнениями .

Из первого уравнения t=x/2. Подставив во второе, получим уравнение траектории:

Это уравнение параболы. В на­чале движения, при t=0, точка находи­лась на самом верху, в положении M0 ( ).

А, например, при t =0,5 c она будет в положении M с координатами

Проекции скорости на оси

При

И модуль скорости

Составляющие скорости по осям и вектор её показаны в масштабе на рис. 7.

Рис.10

 

Проекции ускорения ax= =0, ay= =-8 см∙с-2. Так как проекция вектора ускорения на ось x равна нулю, а на ось y – отрица­тельна, то вектор ускорения на­правлен верти­кально вниз, и величина его постоянна, не за­висит от времени.

 

 

Определение ускорения при естественном способе задания движения. Касательное и нормальное ускорение точки

При естественном способе задания движения вектор определяют по его проекциям на оси , имеющие начало в точке М и движущиеся вместе с нею (рис.11). Эти оси, называемые осями естественного трехгранника (или скоростными (естественными) осями), направлены следующим образом: ось - вдоль каса­тельной к траектории в сторону положительного отсчета расстояния s; ось Mn - по нормали, лежащей в соприкасающейся плос­кости и направленной в сторону вогнутости траектории; ось - перпендикулярно к первым двум так, чтобы она образовала с ними правую тройку. Нормаль Mn, лежащая в соприкасающейся плоскости(вплоскости самой кривой, если кривая плоская), называетсяглавной нормалью, а перпендикулярная к ней нормаль - бинормалью.

Рис.11

 

Было показано, что ускорение точки лежит в соприкасающейся плоскости, т.е. в плоскости ; следовательно, проекция вектора на бинормаль равна нулю ( ).

Вычислим проекции , на две другие оси.

.

будем иметь

,

Окончательно

.

Итак, проекция ускорения точки на каса­тельную равна первой производной от численной величины скорости или второй производной от расстояния (криволинейной координаты) s no времени, а проекция ускорения на главную нормаль равна квадрату скорости деленному на радиус кривизны траектории в данной точке кривой; проекция ускорения на бинор­маль равна нулю (ab=0). Эти результаты выражают собою одну из важных теорем кинема­тики точки.

Рис.12

 

Отложим вдоль касатель­ной и главной нормали Mn векторы и , чис­ленно равные и (рис. 12). Эти векторы изображают касательную и нормальную составляющие ускорения точки.При этом составляющая бу­дет всегда направлена в сторону вогнутости кривой (величина a всегда положительна), а составляющая может быть направлена или в положительном, или в отрицательном направлении оси в зависимости от знака проек­ции (см. рис.12, а и б).

Вектор ускорения точки изображается диагональю параллело­грамма, построенного на составляющих и . Так как эти состав­ляющие взаимно перпендикулярны, то по модулю:

.

 

 



2015-11-27 2258 Обсуждений (0)
Определение ускорения при координатном способе задания движения 4.33 из 5.00 6 оценок









Обсуждение в статье: Определение ускорения при координатном способе задания движения

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2258)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)