Силовые линии электрического поля
Часто в силу тех или иных обстоятельств оказывается удобным задавать электрические поля в пространстве не аналитически с пощью формул, а графически, рисуя карты электрического поля. Такое графическое представление полей удобно проводить, используя силовые линии электрического поля или, как их иначе называют, линии напряженности электрического поля. Назовем силовой линией электрического поля линию, которая начинается на положительных зарядах и заканчивается на отрицательных. Проходят эти линии так, чтобы касательная, проведенная к этой линии в каждой ее точке, совпала с вектором напряженности электрического поля. Силовые линии электрического поля нигде не пересекаются (только на зарядах), располагаются перпендикулярно к заряженным поверхностям. Их принято проводить так, чтобы по густоте расположения линий можно было судить о величине напряженности поля. Рассмотрим несколько примеров проведения силовых линий. На рис. 2 нарисованы силовые линии положительного точечного заряда, а на рис. 3 – силовые линии диполя.
Поток вектора напряженности электрического поля Теорема Гаусса Принцип суперпозиции электрических полей позволяет подсчитать электрическое поле любой системы зарядов. Но есть еще один способ подсчета напряженности электрического поля. Им удобно пользоваться всегда, когда заряды, создающие поле, распределены в пространстве симметрично. Причем вид симметрии может быть любым. Введем некоторую вспомогательную физическую величину, которая называется поток вектора напряженности электрического поля через поверхность. Обозначим этот поток буквой N. Проще всего ввести поток вектора Е для случая однородного электрического поля. Пусть некоторая плоская площадка S находится в однородном электрическом поле. Назовем
величину здесь a – угол между нормалью nк нашей площадке и вектором Е. Поскольку проекция вектора Е на направление нормали может быть записана как
В общем случае поток dN через площадку dS запишется
Попробуем теперь подсчитать поток вектора Е через сферическую поверхность радиуса r, в центре которой находится точечный заряд q (рис.5). Поток вектора Ечерез сферическую поверхность S можно записать
. В этом выражении кружок на интеграле поставлен для обозначения того
обстоятельства, что интегрирование ведется
по замкнутой поверхности. Подставим в
напряженности поля точечного заряда и учтем, что силовые линии поля точечного заряда перпендикулярны к сферической поверхности, т.е. направлены вдоль нормали к ней и в силу этого
Поток вектора напряженности электрического поля через замкнутую поверхность пропорционален алгебраической сумме зарядов, окруженных этой поверхностью.
Популярное: Почему стероиды повышают давление?: Основных причин три... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1035)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |