Мегаобучалка Главная | О нас | Обратная связь


По природе возникновения



2015-12-07 761 Обсуждений (0)
По природе возникновения 0.00 из 5.00 0 оценок




По спектру

Шумы подразделяются на стационарные и нестационарные.

По характеру спектра

По характеру спектра шумы подразделяют на:

  • широкополосный шум с непрерывным спектром шириной более 1 октавы;
  • тональный шум, в спектре которого имеются выраженные тона. Выраженным тон считается если одна из третьеклассных полос частот превышает остальные не менее чем на 7 дБ.

По частоте (Гц)

По частотной характеристике шумы подразделяются на:

  • низкочастотный
  • среднечастотный
  • высокочастотный

По временны́м характеристикам

  • постоянный;
  • непостоянный, который в свою очередь делится на колеблющийся, прерывистый и импульсный.

По природе возникновения

  • Механический
  • Аэродинамический
  • Гидравлический
  • Электромагнитный

 

№7 Шум как гигиенический фактор — это совокупность звуков различной частоты и интенсивности, которые воспринимаются органами слуха человека и вызывают неприятное субъективное ощущение. Шум как физический фактор представляет собой волнообразно распространяющееся механическое колебательное движение упругой среды, носящее обычно случайный характер.

Для определения допустимого уровня шума на рабочих местах, в жилых помещениях, общественных зданиях и территории жилой застройки используется ГОСТ 12.1.003-83. ССБТ «Шум. Общие требования безопасности», СН 2.2.4/2.1.8.562-96 «Шум на рабочих местах, в помещениях жилых, общественных зданий и на территории жилой застройки».

Нормирование шума звукового диапазона осуществляется двумя методами: по предельному спектру уровня шума и по дБА. Первый метод устанавливает предельно допустимые уровни (ПДУ) в девяти октавных полосах со среднегеометрическими значениями частот 63, 125, 250, 500, 1000, 2000, 4000, 8000 ГЦ. Второй метод применяется для нормирования непостоянных шумов и в тех случаях, когда не известен спектр реального шума. Нормируемым показателем в этом случае является эквивалентный уровень звука широкополосного постоянного шума, оказывающий на человека такое же влияние, как и реальный непостоянный шум, измеряемый по шкале А шумомера.

№8 В технике основные источники шума — различные двигатели и механизмы. Общепринятой является следующая классификация шумов по источнику возникновения: - механические; - гидравлические; - аэродинамические; - электрические.

Повышенная шумность машин и механизмов часто является признаком наличия в них неисправностей или нерациональности конструкций. Источниками шума на производстве является транспорт, технологическое оборудование, системы вентиляции, пневмо- и гидроагрегаты, а также источники, вызывающие вибрацию.

Характер производственного шума зависит от вида его источников. Механический шум возникает в результате работы различных механизмов с неуравновешенными массами вследствие их вибрации, а также одиночных или периодических ударов в сочленениях деталей сборочных единиц или конструкций в целом.

Аэродинамический шум образуется при движении воздуха по трубопроводам, вентиляционным системам или вследствие стационарных или нестационарных процессов в газах.

Шум электромагнитного происхождения возникает вследствие колебаний элементов электромеханических устройств (ротора, статора, сердечника, трансформатора и т. д.) под влиянием переменных магнитных полей.

Гидродинамический шум возникает вследствие процессов, которые происходят в жидкостях (гидравлические удары, кавитация, турбулентность потока и т.д.).

№9 Средства защиты от шума подразделяют на средства коллективной и индивидуальной защиты. Борьба с шумом в источнике его возникновения — наиболее действенный способ борьбы с шумом. Создаются малошумные механические передачи, разрабатываются способы снижения шума в подшипниковых узлах, вентиляторах.

Архитектурно-планировочный аспект коллективной защиты от шума связан с необходимостью учета требований шумозащиты в проектах планирования и застройки городов и микрорайонов. Предполагается снижение уровня шума путем использования экранов, территориальных разрывов, шумозащитных конструкций, зонирования и районирования источников и объектов защиты, защитных полос озеленения.

Организационно-технические средства защиты от шума связаны с изучением процессов шумообразования промышленных установок и агрегатов, транспортных машин, технологического и инженерного оборудования, а также с разработкой более совершенных малошумных конструкторских решений, норм предельно допустимых уровней шума станков, агрегатов, транспортных средств и т. д.

Акустические средства защиты от шума подразделяются на средства звукоизоляции, звукопоглощения и глушители шума.

Снижение шума звукоизоляцией. Суть этого метода заключается в том, что шумоизлучающий объект или несколько наиболее шумных объектов располагаются отдельно, изолировано от основного, менее шумного помещения звукоизолированной стеной или перегородкой.

Звукопоглощение достигается за счет перехода колебательной энергии в теплоту вследствие потерь на трение в звукопоглотителе. Звукопоглощающие материалы и конструкции предназначены для поглощения звука как в помещениях с источником, так и в соседних помещениях. Акустическая обработка помещения предусматривает покрытие потолка и верхней части стен звукопоглощающим материалом. Эффект акустической обработки больше в низких помещениях (где высота потолка не превышает 6 м) вытянутой формы. Акустическая обработка позволяет снизить шум на 8 дБА.

Глушители шума применяются в основном для снижения шума различных аэродинамических установок и устройств,

В практике борьбы с шумом используют глушители различных конструкций, выбор которых зависит от конкретных условий каждой установки, спектра шума и требуемой степени снижения шума.

Глушители разделяются на абсорбционные, реактивные и комбинированные. Абсорбционные глушители, содержащие звукопоглощающий материал, поглощают поступившую в них звуковую энергию, а реактивные отражают ее обратно к источнику. В комбинированных глушителях происходит как поглощение, так и отражение звука.

Защита от вибраций

Общие методы борьбы с вибрацией базируются на анализе уравнений, которые описывают колебание машин в производственных условиях и классифицируются следующим образом:

* снижение вибраций в источнике возникновения путем снижения или устранения возбуждающих сил;

* регулировка резонансных режимов путем рационального выбора приведенной массы или жесткости системы, которая колеблется;

* вибродемпферование — снижение вибрации за счет силы трения демпферного устройства, тоесть перевод колебательной энергии в тепловую;

* динамическое гашение — введение в колебательную систему дополнительной массы или увеличение жесткости системы;

* виброизоляция — введение в колебательную систему дополнительной упругой связи с целью ослабления передачи вибраций смежному элементу, конструкции или рабочему месту;

* использование индивидуальных средств защиты.

Снижение вибрации в источнике ее возникновения достигается путем уменьшения силы, которая вызывает колебание. Поэтому еще на стадии проектирования машин и механических устройств следует выбирать кинематические схемы, в которых динамические процессы, вызванные ударами и ускорением, были бы исключены или снижены.

Регулировка режима резонанса. Для ослабления вибраций существенное значение имеет предотвращение резонансных режимов работы с целью исключения резонанса с частотой принуждающей силы. Собственные частоты отдельных конструктивных элементов определяются расчетным методом по известным значениям массы и жесткости или же экспериментально на стендах.

Виброгашение, Для динамического гашения колебаний используются динамические виброгасители: пружинные, маятниковые, эксцентриковые гидравлические. Недостатком динамического гасителя является то, что он действует только при определенной частоте, которая отвечает его резонансному режиму колебаний.

Динамическое виброгашение достигается также установлением агрегата на массивном фундаменте.

Виброизоляция состоит в снижении передачи колебаний от источника возбуждения к объекту, который защищается, путем введения в колебательную систему дополнительной упругой связи. Эта связь предотвращает передачу энергии от колеблющегося агрегата к основе или от колебательной основы к человеку или к конструкциям, которые защищаются.

№10 Средства индивидуальной зашиты от вибрации применяют в случае, когда технические средства не позволяют снизить уровень вибрации до нормы.

К средствам индивидуальной защитыоператора относятся платформы, сидения, рукоятки

Для защиты рук используются рукавицы, вкладыши, прокладки. Для защиты ног — специальная обувь, подметки, наколенники. Для защиты тела — нагрудники, пояса, специальные костюмы.

Защита от шума должна обеспечиваться разработкой шумобезопасной техники, применением средств и методов коллективной защиты, в том числе строительно-акустических, применением средств индивидуальной защиты.

Средства индивидуальной защиты (СИЗ) применяются в том случае, если другими способами обеспечить допустимый уровень шума на рабочем месте не удается.

Принцип действия СИЗ – защитить наиболее чувствительный канал воздействия шума на организм человека – ухо. Применение СИЗ позволяет предупредить расстройство не только органов слуха, но и нервной системы от действия чрезмерного раздражителя.

Наиболее эффективны СИЗ, как правило, в области высоких частот.

СИЗ включают в себя противошумные вкладыши (беруши), наушники, шлемы и каски, специальные костюмы.

Средства индивидуальной защиты от шума в зависимости от их структурных производительности делится на:

• наружного уха (ухо), который был закрыт ухо оболочка снаружи и в зависимости от способа крепления на голове подразделяются на: независимые, твердые и мягкие крепления устройства в голову построен (в сборе) на шлем или другое защитное устройство;

• внутреннее ухо, который был закрыт наружный слуховой проход или присоединиться к ней. В зависимости от характера использования подразделяются на: многоразовые, одноразового использования. И в зависимости от материала - твердый, упругий и волокнистый.

• защитные шлемы.

№11 ЗВУКОИЗОЛЯЦИЯ — комплекс мероприятий по снижению уровня шума, проникающего в помещение извне. З. достигается за счет уменьшения интенсивности прямого звука путем установки ограждений, кабин, кожухов, экранов. Сущность З. состоит в том, что падающая на ограждающую конструкцию энергия звуковой волны отражается в значительно большей степени, чем проходит через нее.

Количественная мера звукоизоляции ограждающих конструкций, выражаемая в децибелах ( дб ), называется звукоизолирующей способностью. Различают звукоизоляцию от воздушного и ударного звуков. Звукоизоляция от воздушного звука характеризуется снижением уровня этого звука ( речи, пения, радиопередачи ) при прохождении его через ограждение и оценивается частотной характеристикой звукоизоляции в диапазоне частот 100-3200 гц с учётом влияния звукопоглощения изолируемого помещения. Звукоизоляция от ударного звука ( шагов людей, передвигания мебели, работы машин и механизмов и т.п. ) зависит от уровня звука, возникающего под перекрытием, и оценивается частотной характеристикой приведённого уровня звукового давления в том же диапазоне частот при работе на перекрытии стандартной ударной машины, также с учётом звукопоглощения изолируемого помещения.
Для обеспечения необходимой звукоизоляции весьма важно качество строительно-монтажных работ; даже самые незначительные щели, отверстия, трещины в конструкциях резко ухудшают звукоизоляционные свойства последних.

Существует множество звукоизоляционных решений, а также материалов, обладающих звукопоглощающими свойствами. По сфере применения их можно подразделить на следующие категории. Это звукопоглощающие материалы, применяемые в качестве внутренней облицовки помещений для обеспечения требуемой акустики внутри помещения. Во вторую группу включают материалы для изоляции от структурного, в том числе, ударного шума. В их число входит изоляция из каменной ваты, техническая пробка, кремнезёмное волокно. И, наконец, третья категория – материалы на волокнистой основе для защиты от воздушного шума, к примеру, изоляция из каменной ваты или войлок.

Обычно материалы для изоляции от шума изготавливаются на основе натурального или синтетического сырья. Звукоизоляционный материал на основе натурального сырья на рынке представлен изделиями из базальтовой ваты, вспученного перлита, каолиновой ваты и вспененного стекла.

№12 Инфразвук — это колебание в воздухе, в жидкой или твердой средах с частотой меньше 16 Гц. Инфразвук человек не слышит, однако ощущает; он оказывает разрушительное действие на организм человека. Высокий уровень инфразвука вызывает нарушение функции вестибулярного аппарата, предопределяя головокружение, головную боль. Снижается внимание, работоспособность. Возникает чувство страха, общее недомогание. Существует мнение, что инфразвук сильно влияет на психику людей.

Все механизмы, которые работают при частотах вращения меньше 20 об/с, излучают инфразвук. При движении автомобиля со скоростью более 100 км/час он является источником инфразвука, который возникает за счет срыва воздушного потока с его поверхности. В машиностроительной отрасли инфразвук возникает при работе вентиляторов, компрессоров, двигателей внутреннего сгорания, дизельных двигателей.

Согласно действующим нормативным документам уровни звукового давления в октавных полосах со среднегеометрическими частотами 2, 4, 8, 16, Гц должен быть не больше 105 дБ, а для полос с частотой 32 Гц — не более 102 дБ. Благодаря большой длине инфразвук распространяется в атмосфере на большие расстояния. Практически невозможно остановить инфразвук при помощи строительных конструкций на пути его распространения. Неэффективны также средства индивидуальной зашиты. Действенным средством защиты является снижение уровня инфразвука в источнике его образования. Среди таких мероприятий можно выделить следующие:

* увеличение частот вращения валов до 20 и больше оборотов в секунду;

* повышение жесткости колеблющихся конструкций больших размеров;

* устранение низкочастотных вибраций;

* внесение конструктивных изменений в строение источников, что позволяет перейти из области инфразвуковых колебаний в область звуковых; в этом случае их снижение может быть достигнуто применением звукоизоляции и звукопоглощения.

Ультразвук широко используется во многих отраслях промышленности. Источниками ультразвука являются генераторы, которые работают в диапазоне частот от 12 до 22 кГц для очистки отливок, в аппаратах для очистки газов. В гальванических цехах ультразвук возникает во время работы травильных и обезжиривающих ванн. Его влияние наблюдается на расстоянии 25—50 м от оборудования. При загрузке и выгрузке деталей имеет место контактное влияние ультразвука.

Ультразвуковые генераторы используются также при плазменной и диффузионной сварке, резке металлов, при напылении металлов.

Ультразвук высокой интенсивности возникает во время удаления загрязнений, при химическом травлении, обдувке струей сжатого воздуха при очистке деталей, при сборке.

Ультразвук вызывает функциональные нарушения нервной системы, головную боль, изменения кровяного давления, состава и свойств крови, предопределяет потерю слуховой чувствительности, повышает утомляемость.

Ультразвук влияет на человека через воздух, а также через жидкую и твердую среды.

Ультразвуковые колебания распространяются во всех упомянутых выше средах с частотой более -16 000 Гц.

Для защиты от ультразвука, который передается через воздух, применяется метод звукоизоляции. Звукоизоляция эффективна в области высоких частот. Между оборудованием и работниками можно устанавливать экраны. Ультразвуковые установки можно располагать в специальных помещениях. Эффективным средством защиты является использование кабин с дистанционным управлением, расположение оборудования в звукоизолированных укрытиях. Для укрытий используют сталь, дюралюминий, оргстекло, текстолит, другие звукопоглощающие материалы.

Звукоизолирующие кожухи на ультразвуковом оборудовании должны иметь блокировочную систему, которая выключает преобразователи при нарушении герметичности кожуха.

№13 По степени воздействия на организм человека вредные вещества в соответствии с ГОСТ 12.1.007 ССБТ "Вредные вещества. Классификация и общие требования безопасности" подразделяются на четыре класса опасности:
1 – вещества чрезвычайно опасные (ванадий и его соединения, оксид кадмия, карбонил никеля, озон, ртуть, свинец и его соединения, терефталевая кислота, тетраэтилсвинец, фосфор желтый и др.);
2 – вещества высоко опасные (оксиды азота, дихлорэтан, карбофос, марганец, медь, мышьяковистый водород, пиридин, серная и соляная кислоты, сероводород, сероуглерод, тиурам, формальдегид, фтористый водород, хлор, растворы едких щелочей и др.);
3 – вещества умеренно опасные (камфара, капролактам, ксилол, нитрофоска, полиэтилен низкого давления, сернистый ангидрид, спирт метиловый, толуол, фенол, фурфурол и др.);
4 – вещества малоопасные (аммиак, ацетон, бензин, керосин, нафталин, скипидар, спирт этиловый, оксид углерода, уайт-спирит, доломит, известняк, магнезит и др.).
Степень опасности вредных веществ может быть охарактеризована двумя параметрами токсичности: верхним и нижним.
Верхний параметр токсичности характеризуется величиной смертельных концентраций для животных различных видов.
Нижний – минимальными концентрациями, влияющими на высшую нервную деятельность (условные и безусловные рефлексы) и мышечную работоспособность.
Практически неядовитыми веществами обычно называют те, которые могут стать ядовитыми в совершенно исключительных случаях, при таком сочетании различных условий, которое в практике не встречается.
Различают химическую и физическую токсичность.
В основе химической токсичности лежит химическое взаимодействие веществ с тканями организма за счет ковалент-ных связей (соли ртути, мышьяк).
При физической токсичности вредные вещества связываются с тканями организма за счет Вандервальсовых сил. Фи-зической токсичностью обладают наркотики (углеводороды, спирты, многие альдегиды).

ПРЕДЕЛЬНО ДОПУСТИМАЯ КОНЦЕНТРАЦИЯ (ПДК) ВРЕДНЫХ ВЕЩЕСТВ – это максимальная концентрация вредного вещества, которая за определенное время воздействия не влияет на здоровье человека и его потомство, а также на компоненты экосистемы и природное сообщество в целом.

№14 Для создания нормальных условий труда необходимо обеспечить не только комфортные метеорологические условия, но и необходимую чистоту воздуха. Вследствие производственной деятельности в воздушную среду помещений могут поступать разнообразные вредные вещества, которые используются в технологических процессах. Вредными принято считать вещества, которые при контакте с организмом человека в случае нарушения требований безопасности могут вызвать производственные травмы, профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами, как в процессе работы, так и в отдаленные сроки жизни настоящего и последующих поколений (ГОСТ 12.1.007-76).

Вредные вещества могут проникать в организм человека через органы дыхания, органы пищеварения, а также кожу и слизистые оболочки. Через дыхательные пути попадают пары, газо- и пылеобразные вещества, через кожу — преимущественно жидкие вещества. В желудочно-кишечный тракт вредные вещества попадают при заглатывании их, или при внесении в рот загрязненными руками.

Аэрозоль - дисперсная система, состоящая из мелких твёрдых или жидких частиц, взвешенных в газовой среде (обычно в воздухе). Аэрозоли, дисперсная фаза которых состоит из капелек жидкости, называются туманами, а в случае твёрдой дисперсной фазы — дымами.

Профессиональные заболевания, вызываемые воздействием промышленных аэрозолей: пневмокониозы (силикоз, силикатозы, метал-локониозы, карбокониозы, пневмокониозы от смешанной пыли, пневмокониозы от пыли пластмасс), биссиноз, хронический бронхит.

Профессиональные заболевания, связанные с воздействием аэрозолей -пневмокониозы. Пневмокониозы различаются на:

· силикозы – развиваются при действии пыли свободного диоксида кремния;

· силикатозы – развиваются при действии аэрозолей солей кремниевой кислоты;

· разновидности силикатоза: асбестоз (асбестовая пыль), цементоз (цементная пыль), талькоз (пыль талька);

· металлокониозы - развиваются при вдыхании металлической пыли, например бериллиевой (бериллиоз);

· карбокониозы, например антраноз, возникающий при вдыхании угольной пыли.

Результатом вдыхания человеком пыли является пневмосклерозы, хронические пылевые бронхиты, пневмонии, туберкулезы. Рак легких.

 

Пневмокониозы (от лат. рnеumon - легкие, соnia - пыль) - пылевые болезни легких. Пневмокониозы по распространенности и тяжести клинических проявлений занимают одно из ведущих мест среди профессиональных заболеваний.

№15 Гигиеническое нормирование параметров микроклимата производственных помещений. Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005—88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны». Они едины для всех производств и всех климатических зон с некоторыми незначительными отступлениями.Содержание вредных веществ в воздухе рабочей зоны не должнопревышать предельно допустимых концентраций (ПДК). ПДК вредноговещества в воздухе рабочей зоны - гигиенический норматив дляиспользования при проектировании производственных зданий,технологических процессов, оборудования, вентиляции, для контроля закачеством производственной среды и профилактики неблагоприятноговоздействия на здоровье работающих.

ПДК - концентрации, которые при ежедневной (кроме выходных дней) работе в течение 8 ч и не более 40 ч в неделю, в течение всего рабочего стажа не должны вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Воздействие вредного вещества на уровне ПДК не исключает нарушение состояния здоровья у лиц с повышенной чувствительностью.

ПДК для большинства веществ являются максимальными разовыми. Для высококумулятивных веществ наряду с максимальной установлена среднесменная ПДК - средняя концентрация, полученная при непрерывном или прерывистом отборе проб воздуха при суммарном времени не менее 75% продолжительности рабочей смены или концентрация средневзвешенная во времени длительности всей смены в зоне дыхания работающих на местах постоянного или временного их пребывания. В течение смены продолжительность действия на работающего концентрации, равной максимальной разовой ПДК, не должна превышать 15 минут и 30 минут - для аэрозолей преимущественно фиброгенного действия и она может повторяться не чаще 4 раз в смену.

Рабочая зона - пространство высотой до 2 м над уровнем пола или площадки, на котором находятся места постоянного или временного (непостоянного) пребывания работающих. Постоянное рабочее место – место, на котором работающий находится большую часть своего рабочего времени (более 50% или более 2 ч непрерывно). Если при этом работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местом считается вся рабочая зона.

Вредное вещество - вещество, которое при контакте с организмом человека может вызвать профессиональные заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами, как в процессе воздействия вещества, так и в отдаленные сроки жизни настоящего и последующих поколений.

 

 

№16 Источники и виды вредных веществ, образующихся в технологических процессах, характерных для выбранной вами специальности

Вредными веществами являются вещества, которые при контакте с организмом человека, могут вызывать профилактические заболевания или другие отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе работы, так и в отдаленные сроки жизни настоящего и последующих поколений (ГОСТ 12.1 – 007 - 76).

Причины и характер загрязнений воздушной среды: принято разделять вредные вещества на 2 группы: 1)Химические; 2) Производственная пыль.

Более точная классификация:

1) Смеси, которые образуют в воздухе пары и газы; 2)Дисперсные системы или аэрозоли.

Аэрозоли подразделяются : 1)Пыль (размер терв. частиц более 1 микрометра); 2)Дым (меньше 1 микрометра); 3) Туман (смесь с воздухом мельчайших жидких частиц, меньше 10 микрометров).

Выделение загрязнителя зависит от характера технологического процесса, от используемого материала и т.д.

Газы выделяются при сгорании веществ; туман - при распылении охлаждающей жидкости; пыль – при дроблении твердых веществ, при транспортировки различного материала и т.д.; дым – при сгорании топлива в печах и энергоустановках.

Диоксид серы ( ), оксиды азота приводят к закислению природных сред – глобальная экологическая проблема (кислотные дожди).

Трансграничный перенос – перенос на большие расстояния вредных веществ (фоновые концентрации).

Действие химических веществ на человека зависит от физико – химических свойств, основные факторы, которые определяют тяжесть последствий воздействия химического вещества, является доза и продолжительность действия.

Согласно ГОСТ 12. 003 вредные вещества делятся на:

1) Общетоксические (вызывают общие отравления – монооксид углерода СО (угарный газ), ртуть, цианистые соединения, мышьяк).

2) Раздражающий (раздражает органы дыхания, слизистую – хлор, аммиак, диоксид серы, оксиды азота, озон и др.)

3) Сенсибилизирующие (способствуют развитию аллергических заболеваний – действуют как аллергены – растворители, лаки на основе нитросоединений, формальдегид и др.).

4) Канцерогенные вещества (способствуют образованию злокачественных опухолей: никель и его соединения, окислы хрома, асбест, аромат углеводорода (полициклические), битум, асфальт, гудрон, масла, сажа, и ряд других веществ).

5) Мутагенные (влияют на генетический аппарат зародышевых клеток, приводят к изменениям (мутациям) наследственной информации: свинец, марганец, формальдегид, радиоактивные элементы).

6) Вещества, влияющие на репродуктивную функцию (стирол, марганец, ртуть).

источники: –повышенная и пониженная температура воздуха; –чрезмерная запыленность и загазованность воздуха; –повышенная и пониженная влажность воздуха; –недостаточная освещенность рабочего места; –превышающий допустимые нормы шум; –повышенный уровень ионизирующего излучения; –повышенный уровень электромагнитных полей; –повышенный уровень статического электричества; –опасность поражения электрическим током; –блеклость экрана дисплея.

 

 

№17 Методы, применяемые для защиты воздушной среды рабочей зоны. Их характеристика

Обеспечить тепловой ба­ланс можно, регулируя значения параметров микроклимата в поме­щении (температуры, относительной влажности и скорости движения воздуха). Поддержание указанных параметров на уровне оптимальных значений обеспечивает комфортные климатические условия для человека, а на уровне допустимых — предельно допус­тимые, при которых система терморегуляции организма человека обеспечивает тепловой баланс и не допускает перегрева или переох­лаждения организма.

Основным методом обеспечения требуемых параметров микро­климата и состава воздушной среды является применение систем вентиляции, отопления и кондиционирования воздуха.

Хорошая вентиляция помещения способствует улучшению са­мочувствия человека. Наоборот, плохая вентиляция приводит к по­вышенной утомляемости, снижению работоспособности.

Наибольшее распространение для обеспечения оптималь­ных параметров микроклимата получила общеобменная приточно-вытяжная вентиляция. Применяется как механическая, так и ес­тественная вентиляция.

Вентиляция — организованный воздухообмен, который обеспечивает удаление из помещения воздуха, загрязненного избыточным теплом и вредными веществами и тем самым нормализует воздушную среду в помещении.

Для обеспечения естественной вентиляции в лабораториях используются устройство, называемое дифлектором (ветровой напор).

В зависимости от использования средств, очистку подразделяют на:

грубую (концентрация более 100 мг/м3 вредных в-в);

среднюю (концентрация 100 - 1 мг/м3 вредных в-в);

тонкую (концентрация менее 1 мг/м3 вредных в-в).

Очистку воздуха от пыли и создание оптимальных параметров микроклимата на РМ, обеспечивает система кондиционирования.

Способы очистки воздуха: Механические (пыли, туманов, масел, газообразных примесей); Пылеуловители; Фильтры; Физико-химические (очистка от газообразных примесей)

Фильтры — устройства, в которых для очистки воздуха используются материалы (пр-во), способные осаживать или задерживать пыль.

бумажные; тканевые; электрические; ультрозвуковые; масляные; гидравлические; комбинированные

Отопле́ние — обогрев помещений с целью возмещения в них теплопотерь и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта и(или) требованиям заказчика.

Система отопления — комплекс устройств, выполняющих функцию отопления — котлы отопительные, сетевые насосы, тепловые сети, устройства автоматического поддержания температуры в помещениях, радиаторы отопления и другие.

Для создания оптимальных метеорологических условий в поме­щениях применяют кондиционирование воздуха. Кондиционирова­нием воздуха называется автоматическое поддержание в помещени­ях заданных оптимальных параметров микроклимата и чистоты воздуха независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании может автоматически регулироваться температура воздуха, его относительная влажность искорость подачи в помещение. Создание таких параметров воздуха осуществляется в специальных установках и устройствах, на­зываемых кондиционерами.

 

№18 Устройство естественной и механической вентиляции.

Естественная система вентиляции создается без применения вентиляторов и происходит вследствие: разности температур воздуха, изменения давления в зависимости от высоты, ветрового давления.

Достоинства естественных систем вентиляции являются дешевизна, простота монтажа и надежность, вызванная отсутствием электрооборудования и движущихся частей. Благодаря этому, такие системы широко применяется при строительстве типового жилья и представляют собой вентиляционные короба, расположенные на кухне и санузлах.

Недостатки естественных систем вентиляции является сильная зависимость от внешних факторов - температуры воздуха, направления и скорости ветра. Кроме этого, такие системы в принципе нерегулируемы и с их помощью не удается решить многие задачи в области вентиляции.

Естественная вентиляция обуславливается разницей температур наружного и внутреннего воздуха, а также силой ветра. Работает это следующим образом. Ветровые потоки воздействуют на одну сторону здания, оказывая на нее давление и вгоняя свежий воздух в помещение. Тогда как с противоположной стороны здания создается разреженная атмосфера и отработанный воздух из помещения стремиться вырваться наружу.

Естественная вентиляция в значительной степени зависит от структуры строительного материала стен здания. Такие материалы как дерево и бетон хорошо пропускаю воздух и способны обеспечить достаточный воздухообмен в помещениях. А вот бетон, масляная краска, штукатурка, пластиковые окна, теплиозляционные материалы значительно снижают воздухопроницаемость.

Механическая система вентиляции применяется там, где недостаточно естественной. В механических системах используются вентиляторы, фильтры, воздухонагреватели, шумоглушители, позволяющие перемещать, очищать и нагревать воздух. Такие системы могут удалять или подавать воздух в вентилируемые помещения независимо от условий окружающей среды. На практике, в квартирах и офисах необходимо использовать именно искусственную систему вентиляции, поскольку только она может гарантировать создание комфортных условий. МВ при помощи электродвигателей, вентиляторов, воздухонагревателей, фильтров, автоматики позволяет транспортировать воздух на значительные расстояния.

Однако, в отличие от естественной вентиляции, механическая требует затрат электроэнергии, иногда довольно значительных. Данный вид систем позволяет осуществлять качественный воздухообмен в помещениях независимо от объемов удаляемого и приточного воздуха, кроме того, работа такой системы не зависит от погодных условий. Также к положительным моментам механической системы вентиляции можно отнести то, что она позволяет производить обработку приточного воздуха - подогрев или охлаждение, осушение воздуха или увлажнение воздуха, фильтрацию и т.д., что практические невозможно при естественном воздухообмене.

На практике часто используют смешанную вентиляцию - и механическую, и естественную. Каждый конкретный проект определяет необходимость в санитарно-гигиеническом отношении, техническом плане и экономической целесообразности какому типу воздухообмена отдать предпочтение.

Вентиляторы являются основным элементом систем механического воздухообмена. По определению, вентиляторы - это машины, предназначенные для транспортирования газов с невысокой степенью сжатия по сети воздуховодов или просто из одного помещения в другое или на улицу

№19 Порядок расчета необходимой производительности общеобменной вентиляции для обеспечения нормативного качества химического состава воздушной среды

Расчёт вентиляции производится с помощью следующих параметров: производительность по воздуху (м³/ч), рабочее давление (Па) и скорость потока воздуха в воздуховодах (м/с), допустимый уровень шума (дБ), мощность калорифера (кВт). Норматив по воздухообмену регламентируется строительными нормами и правилами (СНиП) и санитарными нормами и правилами (Сан Пин)

Расчет общеобменной вентиляции надлежит производить путем суммирования объемов воздуха, необходимых для разбавления каждого вещества в отдельности до его условных предельно допустимых концентраций [ci], учитывающих загрязнения воздуха другими веществами. Эти концентрации меньше нормативных Cпдк

 

Расчет общеобменной вентиляции по газовыделениям

Расчет механической общеобменной вентиляции сводится к определению необходимого качества вентиляционного воздуха L для того, чтобы разбавить вредные выделения до значений, не превышающих предельно допустимых концентраций.

Количество воздуха, необходимого для растворения вредных выделений, поступающих с отработавшими газами, при работе автомобилей одинаковых моделей, определяется по формуле

 

, (1)

 

где G – количество вредных выделений, поступающих в помещение, кг/ч;

- средняя продолжительность работы автомобиля, мин. (табл. 1);

n – число автомобилей, работающих одновременно в течении 1 часа;

ПДК – предельно допустимая концентрация рассчитываемого вещества.

Количество окиси углерода, выделяющейся в помещение при работе карбюраторного двигателя,

 <



2015-12-07 761 Обсуждений (0)
По природе возникновения 0.00 из 5.00 0 оценок









Обсуждение в статье: По природе возникновения

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (761)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)