Мегаобучалка Главная | О нас | Обратная связь


Тема № 19. Определение обыкновенных ДУ. Общее и частное решение. Уравнения с разделёнными и разделяющимися переменными



2015-12-07 481 Обсуждений (0)
Тема № 19. Определение обыкновенных ДУ. Общее и частное решение. Уравнения с разделёнными и разделяющимися переменными 0.00 из 5.00 0 оценок




Обыкновенным дифференциальным уравнением n – го порядка для функции y аргумента х называется соотношение вида

(1.1),

Где F – заданная функция своих аргументов. В названии этого класса математических уравнений термин «дифференциальное» подчеркивает, что в них входят производные (функции, образованные как результат дифференцирования); термин – «обыкновенное» говорит о том, что искомая

функция зависит только от одного действительного аргумента.

Обыкновенное дифференциальное уравнение может не содержать в явном виде аргумент X, Искомую функцию и любые ее производные, но старшая производная обязана входить в уравнение N-го порядка. Например

А) – уравнение первого порядка;

Б) – уравнение третьего порядка.

При написании обыкновенных дифференциальных уравнений часто используются обозначения производных через дифференциалы:

В) – уравнение второго порядка;

Г) – уравнение первого порядка,

Функция называется решением обыкновенного дифференциального уравнения, если при подстановке в него оно обращается в тождество.

Например, уравнение 3-го порядка

имеет решение .

Решить обыкновенное дифференциальное уравнение – значит найти все функции, образующие при подстановке в уравнение тождество. Для уравнения (1.1) семейство таких функций образуется с помощью произвольных постоянных и называется общим решением обыкновенного дифференциального уравнения N-го порядка, причем число констант совпадает с порядком уравнения: Общее решение может быть, и не разрешено явно относительно Y(X): В этом случае решение принято называть общим интегралом уравнения (1.1).

Например, общим решением дифференциального уравнения является следующее

 

выражение: , причем второе слагаемое может быть записано и как , так как произвольная постоянная , делённая на 2, может быть заменена новой произвольной постоянной .

Задавая некоторые допустимые значения всем произвольным постоянным в общем решении или в общем интеграле, получаем определенную функцию, уже не содержащую произвольных констант. Эта функция называется частным решением или частным интегралом уравнения (1.1). Для отыскания значений произвольных постоянных, а следовательно, и частного решения, используются различные дополнительные условия к уравнению (1.1). Например, могут быть заданы так называемые начальные условия при (1.2)

В правых частях начальных условий (1.2) заданы числовые значения функции и производных, причем, общее число начальных условий равно числу определяемых произвольных констант.

Задача отыскания частного решения уравнения (1.1) по начальным условиям называется задачей Коши.

§ 2. Обыкновенные дифференциальные уравнения 1-го порядка – основные понятия.

Обыкновенное дифференциальное уравнение 1-го порядка (N=1) имеет вид: или, если его удается разрешить относительно производной: . Общее решение Y=Y(X,С) Или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом, будет найдено частное решение или, что тоже, будет решена задача Коши. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива теорема, принимаемая здесь без доказательства.

Теорема 2.1. Если в уравнении функция и ее частная производная непрерывны в некоторой области D плоскости XOY , и в этой области задана точка , то существует и притом единственное решение , удовлетворяющее как уравнению , так и начальному условию .

Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром – значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точке тангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке: . Другими словами, уравнение задается в плоскости XOY поле направлений касательных к интегральным кривым. Замечание:Необходимо отметить, что к уравнению приводится уравнение и так называемое уравнение в симметрической форме .



2015-12-07 481 Обсуждений (0)
Тема № 19. Определение обыкновенных ДУ. Общее и частное решение. Уравнения с разделёнными и разделяющимися переменными 0.00 из 5.00 0 оценок









Обсуждение в статье: Тема № 19. Определение обыкновенных ДУ. Общее и частное решение. Уравнения с разделёнными и разделяющимися переменными

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (481)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)