Аналитическое выравнивание динамического ряда. Построение модели тренда
Аналитической выравнивание динамического ряда имеет своей целью получение некоторой математической модели, которая наилучшим образом в заданном смысле выражает динамику анализируемого явления. В качестве моделей тренда используются полиномы различных степеней, экспоненты и логарифмические кривые. Процесс выравнивания динамического ряда состоит из двух основных этапов: - выбор типа кривой (формы), которая наилучшим образом подходит; - определения численных значений (оценка) параметров кривой. Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям, чем ошибка, связанная со статистическим оцениванием параметров. Правильная идентификация тренда важна при построении прогноза. Рассмотрим наиболее используемые типы уравнений тренда: 1. Линейная форма тренда:
где – уровень ряда, полученный в результате выравнивания по прямой; – начальный уровень тренда; – средний абсолютный прирост, константа тренда. Для линейной формы тренда характерно равенство так называемых первых разностей (абсолютных приростов) и нулевые вторые разности, т. е. ускорения.
2. Параболическая (полином 2-ой степени) форма тренда: Для данного типа кривой постоянными являются вторые разности (ускорение), а нулевыми – третьи разности. Параболическая форма тренда соответствует ускоренному или замедленному изменению уровней ряда с постоянным ускорением. Если < 0 и > 0, то квадратическая парабола имеет максимум, если > 0 и < 0 – минимум.
3. Логарифмическая форма тренда: где – константа тренда. Логарифмическим трендом может быть описана тенденция, проявляющаяся в замедлении роста уровней ряда динамики при отсутствии предельно возможного значения. При достаточно большом t логарифмическая кривая становится мало отличимой от прямой линии.
4. Мультипликативная (степенная) форма тренда:
5. Полином 3-ей степени:
В рамках данной работы необходимо построить линейную модель тренда, полиномы 2-й и 3-й степени и степенную модель. Для решения поставленной задачи по аналитическому сглаживанию динамических рядов в системе STATISTICA нам потребуется создать дополнительную переменную.
Нам предстоит построить уравнение тренда, которое по существу является уравнением регрессии, в котором в качестве фактора выступает «время». Создаем переменную «t», содержащую интервалы времени. Первый период включает в себя 16 лет, с 1977-1992 гг., значит переменная «t» ,будет состоять из натуральных чисел от 1 до 16, соответствующих годам. Второй период включает в себя 9 лет, с 1993-2001 гг., значит переменная «t» ,будет состоять из натуральных чисел от 1 до 9. Третий период включает в себя 7 лет, с 2002-2008 гг., значит переменная «t» ,будет состоять из натуральных чисел от 1 до 7.
Популярное: Почему стероиды повышают давление?: Основных причин три... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (881)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |