Решение системы линейных уравнений методом Гаусса (последовательного исключения неизвестных)
Метод Гаусса – это просто! Почему? Известный немецкий математик Иоганн Карл Фридрих Гаусс еще при жизни получил признание величайшего математика всех времен, гения и даже прозвище «короля математики». А всё гениальное – просто!Кстати, портрет Гаусса красовался на купюре в 10 дойчмарок (до введения евро), и до сих пор Гаусс загадочно улыбается немцам с обычных почтовых марок. Метод Гаусса прост тем, что для его освоения ДОСТАТОЧНО ЗНАНИЙ ПЯТИКЛАССНИКА. Про миноры и алгебраические дополнения можно на время забыть! Необходимо уметь складывать и умножать!Не случайно метод последовательного исключения неизвестных преподаватели часто рассматривают на школьных математических факультативах. Парадокс, но у студентов метод Гаусса вызывает наибольшие сложности. Ничего удивительного – всё дело в методике, и мы постараемся в доступной форме рассказать об алгоритме метода. Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может: 1) Иметь единственное решение. 2) Иметь бесконечно много решений. 3) Не иметь решений (быть несовместной). Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решения любойсистемы линейных уравнений. Как мы помним, правило Крамера и матричный методнепригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случаеприведет нас к ответу! На данном уроке мы вновь рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№ 2-3 отведена статья Несовместные системы и системы с общим решением. Заметим, что сам алгоритм метода во всех трёх случаях работает одинаково. Вернемся к простейшей системе
На первом этапе запишем так называемую расширенную матрицу системы:
По какому принципу записаны коэффициенты, думаем, всем видно.
Примечание: Расширенная матрица системы получается из исходной с помощью «операции наращивания строк / столбцов». В данном случае матрицу нарастили за счёт столбца свободных членов исходной системы уравнений.
Примечание: Кроме перечисленных ранее 6-и алгебраических операций с матрицами и «операции наращивания» существует ещё «операция отбрасывания строк/столбцов». С помощью «операции отбрасывания строк/столбцов» составляют, например, подматрицы, определители которых являются минорами элементов матрицы.
Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто линия отчёркивания для удобства оформления.
Определение:Матрица системы – это матрица, составленная только из коэффициентов при неизвестных переменных системы линейных уравнений.
Определение:Расширенная матрица системы – это матрица системы, которую нарастили справа на столбец свободных членов. В данном примере После того, как записана расширенная матрица системы, с ней необходимо выполнить некоторые новые алгебраические действия, которые с лёгкой руки Гаусса называются также элементарными преобразованиями матрицы. Преобразования называют элементарными, потому что показано (будем считать это определением), что
Определение: После каждого элементарного преобразования расширенной матрицы получается совершенно другая матрица, но решения для этой новой системы линейных уравнений остаются теми же, что и для исходной матрицы.
Существуют следующие элементарные преобразования:
1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:
2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу
3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить. Рисовать не будем, понятно, нулевая строка – это строка, в которой одни нули. 4) Строку матрицы можно умножить (разделить)на любое число, отличное от нуля. Рассмотрим, например, матрицу
5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля.
Рассмотрим нашу матрицу из практического примера: Умножаем первую строку на (-2): Как видите, строка, которую ПРИБАВЛЯЛИ – не изменилась. Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ. На практике так подробно, конечно, не расписывают, а пишут короче:
Еще раз: ко второй строке прибавили первую строку, умноженную на (–2). Умножают строку обычно устно или на черновике, при этом мысленный ход расчётов примерно такой: «Переписываю матрицу и переписываю первую строку:
«Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: Записываю результат во вторую строку:
«Теперь второй столбец. Вверху –1 умножаю на –2: (-1∙(-2) = 2). Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку:
«И третий столбец. Вверху –5 умножаю на –2: (-5∙(-2) = 10). Ко второй строке прибавляю первую: (–7 + 10 = 3). Записываю результат во вторую строку:
Пожалуйста, тщательно осмыслите этот пример и разберитесь в последовательном алгоритме вычислений, если вы это поняли, то метод Гаусса практически «в кармане». Но, конечно, над этим преобразованием мы еще поработаем.
Популярное: Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1268)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |