Формула Ньютона для интерполирования вперед и экстраполирования назад
Пусть точка интерполирования х находится ближе к левому концу отрезка [a,b] или слева от него. Тогда интерполяционная формула Ньютона для интерполирования вперед и экстраполирования назад примет вид
где Связь разностных соотношений и конечных разностей:
Остаток в этом случае имеет вид
Формула Ньютона для интерполирования назад и экстраполирования вперед Пусть точка интерполирования х находится ближе к правому концу отрезка [a,b] или справа от него. За первый узел интерполирования примем ближайший и обозначим его через хk. Тогда интерполяционная формула Ньютона для интерполирования назад и экстраполирования вперед примет вид
где Связь разностных соотношений и конечных разностей:
Остаток в этом случае имеет вид
Правило определения максимального порядка разностей, которые ведут себя правильно: если Интерполяционные формулы Гаусса. Пусть узлы интерполирования х0, х1, ..., хn равноотстоящие и точка интерполирования х находится в середине отрезка [a,b] "вблизи" узла хk, причем х>xk. Для построения интерполяционной формулы необходимо привлекать узлы интерполирования в следующем порядке: хk, xk+h, xk-h, ..., xk+ih, xk-ih. Обозначив
то для интерполирования вперед формула Гаусса примет вид
Если точка интерполирования х<хk, то узлы для построения следует привлекать в следующем порядке: хk, xk-h, xk+h, ..., xk-ih, xk+ih. Формула Гаусса для интерполирования назад имеет вид
Построение кривой по точкам Общие понятия В инженерной практике часто используют совокупности точек, абсциссы которых различны, полученные в результате экспериментов. Назначение численных методов заключается в определении зависимости, которая связывает данный набор точек. Другими словами в этом случае численные методы определяют класс допустимых формул, коэффициенты которых должны быть определены. Существует множество различных типов функций, которыми можно воспользоваться. Рассмотрим класс линейных функций вида: Для того, чтобы определить насколько далеко от данных лежит кривая
ошибка. (4.3) Пример:Сравним ошибки для линейного приближения функции
Решение: Вычислим все три вида ошибок:
Таким образом, построенная наилучшим образом линия определяется минимизацией одной из величин, заданных выражениями (4.1) – (4.2). В связи с тем, что третью норму легче минимизировать выбирают её.
Популярное: Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1729)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |