Мегаобучалка Главная | О нас | Обратная связь


Кусочно-кубические сплайны



2015-11-07 1292 Обсуждений (0)
Кусочно-кубические сплайны 0.00 из 5.00 0 оценок




Определение:Функция S(x) называется кубическим сплайном, если существует N кубических полиномов Sk(x) с коэффициентами sk,0, sk,1, sk,2, sk,3, которые удовлетворяют следующим условиям:

1. , для

и , т.е. кубический сплайн состоит из кубических полиномов.

2. Кусочно-кубическое интерполирование задается совокупностью точек, т.е. для .

3. Кусочно-кубическое представление состояло из кривых, которые являются гладкими непрерывными функциями. Вторая и первая производные должны быть непрерывны: , , .

Наиболее часто на практике используется кубический сплайн следующего вида: .

Для задания сплайна коэффициенты , , , - подбираются так, чтобы , а первая и вторая производные были непрерывными.

Леммы о сплайнах:

  1. Смыкающий (чертежный) сплайн.Существует единственный кубический сплайн, который имеет первую производную с граничными условиями , , т.е. смыкающий сплайн имеет определенный наклон в крайних точках.
  2. Естественный сплайн.Существует единственный кубический сплайн со свободными граничными условиями , , т.е. сплайн допускает свободный наклон на краях для обеспечения положения, которое минимизирует осцилляцию кривой.
  3. Экстраполяционный сплайн. Существует единственный кубический сплайн, который используется для экстраполирования по внутренним узлам, чтобы определить по узлам х1, х2 и по узлам хN-1, хN-2.
  4. Сплайн, заканчивающийся параболой. Существует единственный кубический сплайн такой, что на интервале [x0, x1] и на интервале [xN-1, xN].
  5. Сплайн с заданной кривизной в крайних точках.Существует единственный кубический сплайн с заданными значениями второй производной в крайних точках.

 

 

 

Список литературы

1. Фадеев Д.К., Фадеева В.Н. Вычислительные методы линейной алгебры. - М.: ГИФМЛ, 1960, - 656 с.

2. Демидович Б.П., Марон И.А. Основы вычислительной математики. - М.: Наука, 2006, - 664 с.

3. Марчук Г.И. Методы вычислительной математики. - М.: Наука, 1980, - 536 с.

4. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. - М.: Наука, 1987, - 600 с.

5. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. - М.: Наука, 1989, - 656 с.

6. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989, - 432 с.

7. Вержбицкий В.М. Численные методы (математический анализ и обыкновенные дифференциальные уравнения): Учебное пособие для вузов. – М.: Высшая школа, 2001, - 382с.

 

 


[1] Например, F(a)<0 и F(b)>0.

[2] На анализируемом отрезке [a,b].

[3] Т.е. корни уравнений совпадают.

[4] Однократное выполнение процесса вычисления очередного приближения называется итерацией.

[5] Буквально - формулами вычисления площадей.

[6] Говорят, что формулы прямоугольников и трапеций имеют второй класс точности.

[7] Иначе говоря, параболой.

[8] Выведите данную формулу самостоятельно. Подсказка - примените формулу погрешности метода Симпсона.

[9] Для первой и последней точки разбиения значение функции умножать на коэффициент не надо.

[10] Если в программе вычисляется только один интеграл, то это не имеет значения. Но в некоторых профессиональных программах требуется вычислить интегралы для тысяч функций. В этом случае скорость метода имеет существенное значение.

[11] Интегралы от степенной функции легко подсчитать по формуле Ньютона - Лейбница.



2015-11-07 1292 Обсуждений (0)
Кусочно-кубические сплайны 0.00 из 5.00 0 оценок









Обсуждение в статье: Кусочно-кубические сплайны

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1292)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)