Алгоритм решения системы (3.21)–(3.22) симплекс-методом
Шаг 1.Получение начального решения. Выбираются т переменных, называемых базисными и обладающих следующим свойством: они входят с коэффициентом 1 только в одно уравнение и с коэффициентом 0 в остальные уравнения системы (3.22). Остальные п – тпеременных называют свободными. Все свободные переменные полагаются равными 0, а базисные переменные — равные правым частям соответствующих ограничений системы (3.22). Пусть т базисных переменных — это переменные x1, x2,...,xm (в противном случае переменные всегда можно перенумеровать).Тогда начальное решение Х0имеет следующий вид: Хо={x1= b1,х2=b2,...,хт = bm,xm+l = 0,...,хn = 0}. Если все bi 0, то начальное решение является допустимым. Переходят к шагу 3. В противном случае используют алгоритм нахождения начального решения. Шаг 3.Выражение функции f только через свободные переменные.
Значения коэффициентов cj, , естественно, отличны от значений коэффициентов в формуле (3.21), но для простоты обозначены той же буквой.) Переход к шагу 3. Шаг 4.Проверка решения на оптимальность. Составляется симплекс-таблица (табл. 3.3). В левой колонке симплекс-таблицы находятся базисные переменные, в колонке свободных членов – правые части соответствующих ограничений. В i-й строке,
Таблица 3.3
Для проверки решения на оптимальность просматривается последняя f -строка. Если коэффициенты, стоящие при свободных переменных неотрицательны, то полученное решение оптимально. Полученное решение единственно, если все эти коэффициенты положительны. Если среди неотрицательных коэффициентов встречается хотя бы один нулевой, то задача имеет бесконечное множество решений. Если в последней строке есть хотя бы один отрицательный коэффициент, а в соответствующем этому коэффициенту столбце нет ни одного положительного элемента, то целевая функция f не ограничена на области допустимых решений. Если хотя бы один из коэффициентов, стоящих при свободных переменных, отрицательный и в соответствующем ему столбце есть хотя бы положительный элемент, то полученное решение может быть улучшено. Переход к шагу 4. Шаг 5.Получение нового решения. Шаг 5.1.Выбор переменной, вводимой в список базисных переменных. Просматривается последняя строка симплекс-таблицы. Среди элементов этой строки выбирается максимальный по абсолютной величине отрицательный элемент. Столбец, в котором стоит этот элемент, называется разрешающим. Пусть, например, это p-й столбец. Переменная хр,стоящая в этом столбце, вводится в список базисных переменных. Шаг 5.2.Выбор переменной, выводимой из списка базисных переменных. Находят отношение элементов столбца свободных членов к элементам разрешающего столбца. При делении на отрицательный элемент и 0 результат полагают равным . Среди этих отношений находят минимальное. Строка, соответствующая минимальному отношению, называется разрешающей. Пусть, например, это q-я строка. Базисная переменная xq, стоящая в этой строке, выводится из списка базисных переменных. Элемент симплекс – таблицы aqp, стоящий на пересечении разрешающей строки и разрешающего столбца, называется разрешающим элементом. Шаг 5.3.Выполнение симплекс – преобразования и переход к новой симплекс-таблице. Элемент aij новой симплекс-таблицы вычисляется с помощью следующего симплекс – преобразования: (3.23) (3.24) Таким образом, при переходе к новой симплекс-таблице все элементы разрешающей строки делятся на разрешающий элемент (3.23), а все остальные элементы симплекс – таблицы, включая коэффициенты Новое решение имеет следующий вид: все свободные переменные в нем полагаются равными 0, а все базисные переменные – свободным членам, стоящим в одной строке с ними. После построения новой симплекс-таблицы следует перейти к шагу 3
Популярное: Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (543)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |