Мегаобучалка Главная | О нас | Обратная связь


Новое определение вектора



2016-01-26 715 Обсуждений (0)
Новое определение вектора 0.00 из 5.00 0 оценок




Пусть имеется вектор . Подобно тому, как точку с координатами для краткости обозначают через , вектор с компонентами обозначим через . При переходе к новой системе координат компоненты вектора преобразуются по формуле:

(40)

Проиллюстрируем применение символа Кронекера для обращения формулы (40). Умножим обе части (40) на :

, т.е.

(41)

При выводе (41) мы использовали формулы (36) и (39). Формулы (40) и (41) положены в основу нового определения вектора.

Определение. Вектор – это геометрический объект, который в любой прямоугольной системе координат определяется тремя числами – его компонентами, которые при преобразовании системы координат преобразуются по формулам (40) и (41).

Вектор существует независимо от системы координат, он инвариантен, а вот его координаты меняются при преобразованиях системы координат. Новое определение вектора сохраняет все известные из курса линейной алгебры операции с векторами:

1) Сложение векторов:

(42)

2) Сложение ассоциативно, т.е.

(43)

3) Умножение вектора на скаляр:

(44)

4) Дистрибутивность умножения:

(45)

Если компоненты вектора зависят от некоторого параметра , то производные тоже образуют вектор , который называется производной исходного вектора по . Аналогично определяется и производная более высокого порядка вектора по скалярному параметру.

Рассмотрим скалярное произведение двух векторов и :

(46)

Докажем, что скалярное произведение – скаляр и инвариантно относительно преобразования системы координат. В новой системе координат компоненты векторов обозначим и . Тогда скалярное произведение будет равно:

(47)

Модуль вектора, определяемый скалярным произведением вектора самого на себя, запишется так:

(48)

Записывать квадрат модуля в виде нецелесообразно, т.к. при такой записи не ясно, что представляет собой немой индекс. Вектор, модуль которого равен единице, называется, как известно, единичным вектором или ортом. Направление в пространстве обычно задается единичным вектором. Рассмотрим единичный вектор . Скалярное произведение определяет проекцию на направление :

(49)

Поскольку компонентами единичного вектора являются направляющие косинусы ,

или короче , (50)

то (51)

Формула (51) линейна и однородна относительно направляющих косинусов. Она означает, что для любого направления в пространстве каждому вектору можно поставить в соответствие скаляр – проекцию вектора на это направление, посредством линейного и однородного относительно направляющих косинусов соотношения. Выясним, какой смысл имеют числа в (51). Совместим направление с положительным направлением оси . Тогда , а и , т.е. – это проекция вектора на направление оси . Аналогично доказывается, что и – это проекции вектора на две другие оси. Следовательно, проекция вектора на произвольное направление определяется его проекциями на три фиксированных направления координатных осей.

Формула (51) будет играть в дальнейшем определяющую роль, поскольку она допускает далеко идущие обобщения.

§8. Задачи.

Задача 1. Старая система координат преобразуется к новой системе , заданной следующими углами: , , , . Написать матрицу преобразования и проверить ее ортогональные свойства.

Решение. Имеем:

, ,

, ,

,

, ,

.

Рис.5
Матрица преобразования будет иметь вид: (52)

Ортогональность ее строк и столбцов проверяется непосредственно.

Задача 2. Пусть новая система координат получена из старой в результате вращения вокруг оси на угол против часовой стрелки. Написать матрицу преобразования.

Решение.

Рис.6
, ,

,

, ,

,

, ,

Тогда матрица преобразования имеет

u ngf3QSJrzR5BF1ZD3aD48JzApNP2K0YDtGaD3ZctsRwj+VaBtqqsKEIvx0VRXgTh2tOT9ekJURSg GuwxmqY3fur/rbFi04GnSc1KvwI9tiJq5YnVXsXQfjGo/VMR+vt0Ha2eHrTlDwAAAP//AwBQSwME FAAGAAgAAAAhAMVXEwPfAAAACgEAAA8AAABkcnMvZG93bnJldi54bWxMj9FOg0AQRd9N/IfNmPhi 6FIs1FKWRk00vrb2AxZ2CqTsLGG3hf6945M+Tu7JvWeK3Wx7ccXRd44ULBcxCKTamY4aBcfvj+gF hA+ajO4doYIbetiV93eFzo2baI/XQ2gEl5DPtYI2hCGX0tctWu0XbkDi7ORGqwOfYyPNqCcut71M 4jiTVnfEC60e8L3F+ny4WAWnr+kp3UzVZziu96vsTXfryt2UenyYX7cgAs7hD4ZffVaHkp0qdyHj Ra8gSlbpklkFzxkIBiLeS0BUCtJkA7Is5P8Xyh8AAAD//wMAUEsBAi0AFAAGAAgAAAAhALaDOJL+ AAAA4QEAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVzXS54bWxQSwECLQAUAAYACAAA ACEAOP0h/9YAAACUAQAACwAAAAAAAAAAAAAAAAAvAQAAX3JlbHMvLnJlbHNQSwECLQAUAAYACAAA ACEACT2yL4gCAAAYBQAADgAAAAAAAAAAAAAAAAAuAgAAZHJzL2Uyb0RvYy54bWxQSwECLQAUAAYA CAAAACEAxVcTA98AAAAKAQAADwAAAAAAAAAAAAAAAADiBAAAZHJzL2Rvd25yZXYueG1sUEsFBgAA AAAEAAQA8wAAAO4FAAAAAA== " stroked="f">
вид: (53)

Задача 3. Исследовать влияние преобразования координат

Рис.7
на компоненты вектора.

Решение. Это преобразование координат называется инверсией (отражением) относительно плоскости . Первоначальная правая система координат преобразуется в левую . Матрица преобразования имеет вид: (54)

Вектор преобразуется по формуле (40):

(55)

или

Таким образом, указанная инверсия изменяет только компоненту , две другие компоненты при этом не меняются.

Задача 4. Найти преобразование компонент вектора при вращении, описанном в задаче 2.

Решение. Используя матрицу преобразования (53) и формулу (55), получим:

(56)

Задача 5.. Доказать равенство (57)

Решение. Имеем:

Задача 6. Компоненты единичного вектора являются непрерывно дифференцируемыми функциями параметра . Показать, что вектор перпендикулярен вектору .

Решение. Необходимо доказать, что скалярное произведение . Имеем:

Задача 7. Доказать, что каждый элемент ортогональной матрицы преобразования равен своему алгебраическому дополнению, взятому со знаком плюс или минус.

Решение. Матрица перехода от старой системы координат к новой имеет вид (15). Ее определитель, как было показано в параграфе 3, равен , где знак плюс берется в том случае, если старая и новая системы координат имеют одинаковую ориентацию (например, обе правые) и знак минус – в противном случае. По определению обратной матрицы имеем:

где – алгебраическое дополнение элементов матрицы . С другой стороны, как было показано в параграфе 3, обратная матрица получается транспонированием прямой матрицы, т.е. и имеет вид (17). Отсюда и получаем, что .

Подчеркнем еще раз, что знак плюс берется тогда, когда обе системы координат, старая и новая, имеют одинаковую ориентацию и знак минус – в противном случае.

Тензор второго ранга.

Вспомним задачу, приведшую нас в параграфе 1 к понятию тензора напряжений, и формулу (12). Сравним ее с формулой (51). Формула (51) любому направлению в пространстве сопоставляет скаляр , который мы назвали проекцией вектора на направление . Формула (12) идентична по структуре формуле (51), но с ее помощью любому направлению в пространстве сопоставляется не скаляр, а вектор тоже посредством линейного и однородного относительно направляющих косинусов соотношения. Из этого и будем исходить. Итак, пусть любому направлению в пространстве сопоставляется вектор с помощью линейного и однородного относительно направляющих косинусов соотношения:

(58)

Геометрический объект с таким свойством называется тензором второго ранга и обозначается . Вектор называется проекцией тензора на направление или значением тензора в этом направлении. Выясним, какой смысл имеют векторы , , в формуле (58). Для этого совместим направление с направлением оси . Тогда , , . Получаем, что проекция тензора на ось равна вектору . Аналогично, совмещая направление с направлением осей и , получим, что векторы и суть проекции тензора на оси и . Таким образом, в любой прямоугольной системе координат тензор задается тремя векторами , , – своими проекциями на базисные направления. Компоненты векторов , , в системе координат обозначим , , .

Девять величин называются компонентами тензора в системе координат . Расположим их в виде матрицы:

, (59)

которая называется матрицей тензора. Столбцы матрицы определяют три проекции тензора на координатные оси.

В другой системе координат тензор также определяется тремя проекциями , , на новые координатные оси. Проекции тензора в новой и старой системах координат связаны друг с другом. Установим эту связь. Совместим в (58) направление с направлением оси . Получим проекцию тензора на ось :

(60)

Совместив с направлением оси , получим

, (61)

и наконец:

(62)

Стоящие в этих формулах косинусы – это элементы матрицы преобразования . Поэтому можно переписать:

(63)

.

Сокращенно это записывается так:

, , (64)

или еще короче: (65)

Видим, что закон преобразования проекций тензора такой же, как закон преобразования проекций вектора. Матрица тензора в новой системе координат состоит из компонент проекций тензора на эти новые оси. Первая проекция – вектор в новой системе имеет компоненты: . Аналогично и . Составленная из них матрица:

(66)

называется матрицей тензора в новой системе координат. Таким образом, матрица тензора в старой системе состоит из компонент проекций тензора на старые оси, а в новой системе – из компонент проекций тензора на новые оси.

Установим связь между компонентами тензора в старой и новой системах координат. Обозначим компоненты векторов в новом базисе через , т.е. . Компоненты векторов в новом базисе выразим через старые по формулам преобразования вектора:

(67)

Тогда первое равенство (64) в новых координатах запишется так:

(68)

Аналогично, две другие формулы (64) в новых координатах будут выглядеть так:

(69)

Или объединяя все три формулы:

(70)

По формуле (70) преобразуются компоненты тензора при переходе от старой системы координат к новой. Выведем обратную формулу. Умножим обе части (70) на , воспользуемся ортогональностью матрицы перехода и свойством символа Кронекера:

(71)

Умножим теперь обе части на :

или (72)

Формулы (70) и (72) определяют закон преобразования тензора второго ранга. Они положены в основу второго определения тензора. В любой прямоугольной системе координат тензор 2-го ранга определяется девятью компонентами, которые при преобразовании системы координат преобразуются по формулам (70) и (72).

 



2016-01-26 715 Обсуждений (0)
Новое определение вектора 0.00 из 5.00 0 оценок









Обсуждение в статье: Новое определение вектора

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (715)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)