Мегаобучалка Главная | О нас | Обратная связь


СОВЕРШЕНСТВОВАНИЯ ОБРАБОТКИ МАТЕРИАЛОВ РЕЗАНИЕМ



2018-07-06 534 Обсуждений (0)
СОВЕРШЕНСТВОВАНИЯ ОБРАБОТКИ МАТЕРИАЛОВ РЕЗАНИЕМ 0.00 из 5.00 0 оценок




Продукция современного машиностроения характеризуется использованием высокопрочных и труднообрабатываемых материалов, резким повышением требований к точности и качеству изделий и значительным усложнением конструктивных форм деталей машин, получаемых обработкой резанием. Поэтому процесс механической обработки требует постоянного совершенствования. В настоящее время наиболее перспективными направлениями такого совершенствования являются:

а) высокоскоростная обработка;

б) «сухая» обработка;

в) «твердая» обработка.

Исследования в этих направлениях ведутся уже давно, но лишь успехи последних лет в области создания новых инструментальных материалов и высокоэффективных конструкций металлорежущих станков и оснастки позволили достигнуть значительных практических результатов.

Высокоскоростная обработка - это обработка, при которой скорость резания в 3...5 и более раз превышает скорость обычной обработки (табл.4.5). Она экономически целесообразна при чистовой обработке заготовок, имеющих большое количество поверхностей, для обработки которых необходимо малое время, частые изменения позиционирования узлов станка и смена инструментов.

Для этого требуется применение весьма жестких и виброустойчивых станков с частотой вращения шпинделей 15000...20000 об/мин и более, оснащенных линейными двигателями для ускоренных вспомогательных перемещений.

Высокоскоростная обработка по сравнению с обычной обработкой имеет следующие преимущества:

а) большую производительность;

б) большую точность и низкую шероховатость обработанной поверхности;

в) возможность обработки тонкостенных заготовок из-за малых сил резания, так как снимаются тонкие стружки;

г) хорошие стружкодробление и стружкоотвод;

д) отсутствие тепловых деформаций заготовок.

К недостаткам высокоскоростной обработки относятся:

а) высокая стоимость станков;

б) невозможность изготовления нетехнологичных деталей;

в) для каждой заготовки из-за сложности конфигурации необходимо назначать свои режимы резания;

г) инструменты с частотой вращения более 8000 об/мин требуют динамической балансировки и специальных патронов для их крепления.

Таблица 4.5. Скорость резания при обычной и высокоскоростной обработках (ВСО)

Обрабатываемый материал Стандартные твердосплав-ные инструменты (концевые фрезы и сверла) Специальные инструменты (профильные и торцовые фрезы)
    Скорость резания, м/мин
    Обычная ВСО Обычная ВСО
Алюминиевые сплавы >305 >3050 >610 >3658
Чугун мягкий
обычный
    Сталь конструкционная
легированная
коррозионно-стойкая
закаленная (< 65 HRC)
Титановые сплавы

Идею о возможности высокоскоростной обработки впервые высказал в 1931 г. С. Salomon (Германия). Исследуя отрезку алюминиевых листов дисковой фрезой большого диаметра, он пришел к выводу, что с увеличением скорости резания температура сначала резко возрастает, а затем также резко падает (рис. 4.21). Это позволило ему предположить, что для каждого обрабатываемого материала существуют две критические скорости v1 и v2 ограничивающие диапазон скоростей, в котором из-за слишком высоких температур процесс резания невозможен.

  Рис. 4.21. Влияние скорости резания на температуру (С. Salomon)  

Уменьшение температуры резания на правой ветви этой кривой академик В.Д. Кузнецов объяснял тем, что с ростом скорости резания (деформации) предел текучести обрабатываемого материала приближается к его пределу прочности и металл становится хрупким. В результате объем пластических деформаций, а, следовательно, и количество выделяющейся теплоты уменьшаются.

При резании пластичных металлов с ростом скорости резания изменяется характер образования стружки: сливная стружка постепенно переходит в суставчатую стружку, а затем в элементную. М.И. Клушин объяснял это эффектом адиабатического разогревания зоны сдвига теплотой, образуемой при пластическом деформировании слоя, срезаемого с высокой скоростью деформации. В этом случае выделившаяся теплота локализуется в тонком сдвигаемом слое и тем самым способствует интенсификации разрушения срезаемого слоя в процессе его деформирования. В результате локализованной остается также и деформация, нераспространяющаяся в окружающий металл, и сопротивление деформации уменьшается. Таким образом, имеет место так называемый локальный высокотемпературный сдвиг, который приводит к нарушению сплошности стружки с образованием суставов и элементов. При этом чем выше скорость резания, тем выше скорость деформации и тем вероятнее действие разрушающего сдвига, приводящее к цикличности процесса стружкообразования.

При высокоскоростной обработке скорость резания превышает скорость распространения теплоты и поэтому основная доля теплоты уходит в стружку, а в заготовку и инструмент теплота почти не поступает. В результате стойкость инструмента увеличивается, а тепловые деформации заготовки уменьшаются.

В качестве инструментальных материалов для высокоскоростной обработки применяют мелкозернистые и особомелкозернистые твердые сплавы группы ВК, в том числе с одно- и многослойными покрытиями, а также режущую керамику и СТМ.

«Сухая» обработка - это лезвийная обработка материалов без применения СОЖ или с применением альтернативных СОЖ (аэрозоль, воздух и т.д.). Последние применяют в тех случаях, когда полный отказ от СОЖ невозможен, например, при сверлении, растачивании, резьбонарезании и др.

Все большее применение «сухой» обработки вызвано ростом расходов на приобретение, эксплуатацию и утилизацию СОЖ, а также ее неблагоприятным воздействием на организм человека и окружающую среду.

Наиболее легко без СОЖ обрабатывается чугуны, несколько труднее - углеродистые стали и еще труднее - коррозионно-стойкие стали.

«Сухая» обработка труднообрабатываемых материалов приводитк снижению стойкости инструментов и ухудшению качества обработанной поверхности. Это является следствием высоких температур резания, трения и адгезионного взаимодействия между инструментальным и обрабатываемым материалами. В результате усиливаются процессы адгезионного, усталостного и абразивного износов и деформации режущего клина. При этом обычно образуется сливная или путанная стружка, затрудняющая ее отвод из зоны резания.

В качестве альтернативной СОЖ используют, например, аэрозоль, состоящую из воздушной среды, подаваемой в зону резания под давлением 0,05...0,6 МПа, в которой взвешены частицы СОЖ, расходуемые в количестве 5...30 мг/ч. Такого объема СОЖ часто бывает вполне достаточно для значительного снижения в зоне резания сил трения и адгезионного взаимодействия и, как следствие, температуры резания. При этом предотвращается налипание стружки на режущие кромки инструмента.

Охлаждение зоны резания осуществляют и дозированной подачей СОЖ в виде микрокапсул. В результате уменьшается выброс в атмосферу вредных веществ, технологические характеристики процесса резания не ухудшаются, упрощается утилизация и сокращаются расходы на СОЖ.

При «сухом» электростатическом охлаждении режущих инструментов воздух активируют непрерывным электрическим разрядом коронного типа. В результате воздух ионизируется, насыщается озоном и охлаждается. Озон является сильным окислителем и, попадая при обработке на поверхности металла, приводит к образованию оксидной пленки. Ионизированный охлажденный воздух обладает большей проникающей способностью, чем СОЖ и оказывает значительное воздействие на процессы контактного взаимодействия в зоне резания. Метод сохраняет технологические показатели, обеспечиваемые СОЖ, улучшает санитарно-гигиенические условия, а также сокращает эксплуатационные расходы.

Инструментальные материалы для «сухой» обработки должны обладать повышенными теплостойкостью, твердостью, износостойкостью и пределом прочности на изгиб. Такие свойства имеют твердые сплавы группы ТТК, а также мелкозернистые и особомелкозернистые твердые сплавы группы ВК, в том числе с одно- и многослойными покрытиями.

«Твердая» обработка - это лезвийная обработка металлов, закаленных до твердости 47...70 HRC. Она осуществляется без применения СОЖ, так как в противном случае из-за тепловых ударов резко снижается стойкость инструментов.

При «твердой» обработке благодаря специально подобранной геометрии режущего клина и режиму обработки в зоне резания металла, например твердостью 62 HRC, выделяется такое большое количество теплоты, что происходит местный отпуск металла до твердости 25 HRC. При этом основная доля теплоты отводится стружкой, а заготовка и инструмент почти не нагреваются. В результате твердость детали уменьшается примерно на 2 HRC, а твердость стружки становится равной 45 HRC.

«Твердую» обработку чаще всего применяют вместо шлифования с целью уменьшения трудоемкости изготовления деталей и, как следствие, увеличения на 30...50 % экономичности процесса обработки. Это достигается благодаря следующим достоинствам «твердой» обработки:

1) более высокой производительности за счет высоких скоростей резания и уменьшения вспомогательного времени;

2) более простой наладке станков;

3) экологичности из-за отсутствия СОЖ;

4) отсутствию прижогов;

5) большей точности обработки, так как малы температурные деформации заготовок.

Высокие температурные (около 1500 °С) и силовые (до 20 кН/мм2) нагрузки, характерные для «твердой» обработки, вызывают большой износ режущего клина и, как следствие, появление на обработанной поверхности так называемого «белого слоя». Последний имеет более высокую, чем обрабатываемый металл, твердость и неблагоприятные растягивающие напряжения, которые возникают из-за высоких температур и быстрого охлаждения заготовки.

При «твердой» обработке высокая температура, с одной стороны, облегчает процесс резания, приводя к разупрочнению металла в зоне резания, и тем самым снижает силу резания, а с другой - отрицательно влияет на стойкость инструмента.

В зависимости от твердости обрабатываемых металлов при «твердой» обработке применяют следующие инструментальные материалы:

а) для металлов твердостью менее 40 HRC – мелкозернистые твердые сплавы с покрытиями и без них;

б) для металлов твердостью 40...50 HRC - твердые сплавы, режущая керамика и КНБ. В этом случае инструментальные материалы выбирают исходя из экономических расчетов, так как твердые сплавы имеют низкую теплостойкость, а режущая керамика и КНБ разрушаются в виде сколов, вызванных срывающимся наростом, столь характерным для обработки этих металлов;

в) для металлов твердостью 50... 7О HRC - режущая керамика и КНБ. Режущая керамика обеспечивает большую шероховатость обработанной поверхности (Ra = 0,6 мкм), чем КНБ (Ra = 0,3 мкм). Это объясняется тем, что для КНБ характерен равномерный износ по задней поверхности, а для режущей керамики - микровыкрашивания.




2018-07-06 534 Обсуждений (0)
СОВЕРШЕНСТВОВАНИЯ ОБРАБОТКИ МАТЕРИАЛОВ РЕЗАНИЕМ 0.00 из 5.00 0 оценок









Обсуждение в статье: СОВЕРШЕНСТВОВАНИЯ ОБРАБОТКИ МАТЕРИАЛОВ РЕЗАНИЕМ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (534)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)