Лабораторная работа № 2.
Тема: Элементы комбинаторики. Дополнительные методы и приемы. Цель: изучение средств пакета MS Excel для реализации возможности вычислений по основным формулам комбинаторики (сочетания, размещения, перестановки). Теоретические сведения: 1. Полиномиальные коэффициенты. Пусть дано множество Пример. Сколькими способами можно расставить белые фигуры: 2 ладьи, 2 слона, 2 коня, ферзь и король на первой линии шахматной доски? Решение. Рассматриваемые кортежи имеют длину 8 и состоят из элементов пяти видов. Состав кортежей имеет вид (2, 2, 2, 1, 1). Следовательно, число способов, которыми можно расставить 8 фигур на первой линии шахматной доски, равно
Данную задачу удобно понять в рамках стандартной урновой схемы: Имеется 8 различных шаров (позиций горизонтали) и 5 урн(классов фигур). Сколько способов распределить 8 различных шаров по 5 урнам так, что в первую урну(ладьи) попадает 2 шара, вторую(слоны) – также 2 и т.д. формируя распределение шаров по урнам вида (2,2,2,1,1). Наиболее точно данная комбинаторная задача специфицируется путем использования понятия функции. Искомое число это количество отображений следующего вида: Пример. Число различных слов, которое получим, переставляя буквы слова «математика», равно 2. Сочетания с повторениями. Если порядок различных элементов в составном кортеже не важен, а имеет место только состав кортежа Пример. В цветочном магазине продаются цветы шести сортов. Сколько можно составить различных букетов из десяти цветов в каждом? (Букеты, отличающиеся лишь расположением цветов, считаются одинаковыми.) Решение. Рассматриваемое множество состоит из шести различных элементов, а кортежи имеют длину 10. Поскольку порядок расположения цветов в букете не играет роли, то число букетов равно числу сочетаний с повторениями из шести элементов по десяти в каждом. Следовательно, можно составить Пример. Сколько решений имеет уравнение
где каждое Решение. Решить уравнение
Популярное: Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (877)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |