Мегаобучалка Главная | О нас | Обратная связь


U                                                                      изменений р – типа увеличивается, следовательно,



2019-07-03 184 Обсуждений (0)
U                                                                      изменений р – типа увеличивается, следовательно, 0.00 из 5.00 0 оценок




                                                            увеличивается и проводимость. Увеличение концентрации оситных носителей в слое называется обогащением (уменьшение – объединением при неизменной полярности U ). По мере уменьшения d эффект поля может исчезнуть за счёт пробоя диэлектрика. Даже если диэлектрик – вакуум, возможен туннельный эффект.

Глубина проникновения поля в ПП (фактически, толщина обогащённого слоя) называется длиной Дебая (дебаевская длина).

ЭЛЕКТРОННО-ДЫРОЧНЫЕ ПЕРЕХОДЫ

В подавляющем большинстве случаев в микроэлектронике находят применение так называемые p-n переходы, возникающие на границе металл – полупроводник и полупроводник – полупроводник. Комбинация двух ПП различной проводимости обладают вентильными свойствами, т.е. они лучше пропускают поток в одном (прямом) направлении. Практически все реальные p-n переходы - плавные, т.е. в районе металли

            p-n переход                ческой границы концентрация одних примесей

 p                  n           
                                                      постоянно растёт, а других – убывает. Сама металли

                                                      ческая граница характеризуется равенством p=n.

                                                      Как правило, концентрация p и n вне границы

металлическая граница              существенно различаются, и такие p-n переходы 

                                                     называются асимметричными (несимметричными).


Т.к концентрация n > p, то число электронов, диффундирующих в область р больше, чем число диффундирующих «дырок» и в слое р вблизи границы оказываются избыточные е, ре-комбинирующие с «дырками» до тех пор, пока не будет равновесия. Следовательно, концентрация «дырок» уменьшится. Аналогично можно рассуждать и по отношению к «дыркам».

Например:

                            асимметрия    

       n                    n,p       

                                                   p

       

идеальный

переход

 

 


                                                              Х     

В идеале считают, что в p-n переходе                               Ширина перехода (d)                                                                                                              

вообще отсутствуют носители и сам                                                                                                  p-n переход является наиболее высокоомной частью структуры. Т.к. концентрация p и n различна, то между p и n областями, разделёнными высокоомным переходом, возникает потенциальный барьер. Если к переходу приложить напряжение + и к p-области (такая полярность называется прямой), то высота потенциального барьера уменьшится и

уменьшится его ширина. При обратной номерности - высота барьера и его

 n     p
                                                                                                      

ширина увеличатся. При прямых напряжениях в каждой из областей появляются избыточные носители и тогда говорят об инжекции носителей, если напряжение обратное, то количество носителей уменьшается, и говорят об    

-     +

                               (+) (-)        

 

 

экстракции носителей . Причём, если переход симметричный, то инжекция ( экстракция) е и «дырок» - одинаковая. Если переход асимметричный, то считают, что инжекция имеет односторонний характер и главную роль играют носители, инжектируемые из низкоомного (легированного) слоя в высокоомный. Низкоомный (более легированный) слой эмиттером, а высокоомный – базой. Таким образом, если к p-n переходу приложить прямое напряжение, то это приводит к изменению концентрации инжектированных носителей в области базы, а следовательно, изменяется и величина накопленного заряда, обусловленного этими зарядами. Процесс накопления избыточного заряда эквивалентен процессу заряда ёмкости. Поэтому говорят, что p-n переход обладает диффузионной ёмкостью.

Помимо диффузионной p-n переход обладает и барьерной (зарядной) ёмкостью (Сб) (если к p-n переходу приложить обратное напряжение, то на металлической границе носители отсутствуют и мы имеем ярко выраженную ёмкость). Сд и Сб – нелинейные ёмкости. Сд в основном проявляется при прямом включении диода, а Сб – при обратном. Первая зависит от тока Iпр, вторая – от Uобр. Строго говоря, такое разделение чисто условное, но оно удобно при анализе переходных процессов.

Сд и Сб существенно влияют на частотные свойства p-n перехода. Аналитически можно показать, что ВАХ такого p-n перехода описывается экспоненциальной зависимостью (Степаненко стр 82) вида:                                                                              I/ I0

I = I0(e(U/т) – 1), где

 

т – температурный потенциал ~ 25 милливольт                                                                                 

I0 – тепловой ток, сильно зависящий от Т p-n перехода.                                                                      

Можно доказать, что:                                                                                         2 4    U/т                                       

  I0(Т) = I0(Т0)2Т/Т*, где

                                                                                                                                                                    

Т0 – средняя температура некоторого температурного диапазона, например - комнатная

Т – температура - градиент

Т* - так называемая температура удвоения.

В частности для кремния:

I0(Т) I0(20С)2Т-20С /10С)

 

Т.е. считают, что I0 изменяется в 2 раза при изменении Т перехода на 10С (по другим источникам Т* = 5С).

Прямая ветвь ВАХ довольно крутая и можно считать, что падение U на таком переходе = const практически во всём диапазоне изменения рабочих токов, и при расчётах, обычно, полагают, что

Uдиода пр = 0,7В для нормального режима и

Uдиода пр В на микротоках

 

ПРОБОЙ P-N ПЕРЕХОДА

На приведённой выше ВАХ изображён только начальный участок обратной ветви. Как пойдёт обратная ветвь при дальнейшем увеличении Uобр?

Дальше – пробой p-n перехода.

Различают три вида (механизма) пробоя: лавинный, туннельный и тепловой.

А) Лавинный пробой происходит если                     Uобр                                                                

ширина p-n перехода (d) больше длины                                                                         

свободного пробега.                                                                                                                        

                                   d  l                                                                                                             

В этом случае, не основные носители, ускоряясь                                      Uпробоя                                                                                                      в переходе, могут приобрести энергию, достаточную                                                                                                                                                           

для ионизации атомов кристаллической решётки.                                                                                                                                                                  

Выбитые е в свою очередь, ускоряясь, принимают                                                                                                                                                                 

участие в дальнейшей ионизации. Процесс           1           2            3        I обр      носит лавинный характер (ветвь 1).

Скорость нарастания тока характеризуется коэффициентом ударной ионизации,                                                     

который зависит в основном от распределения примесей (строго говоря – от

напряжённости электрического поля Е в данной точке). При таком пробое

rp-n = dU/dI

резко уменьшается. Однако, напряжение Up-n не может стать ниже Uпробоя т.к. Е станет < Е ионизации. Поэтому ветвь почти строго вертикальна.

Этот пробой используют для создания ПП приборов – стабилитронов (дать параметры и схему).

В) Туннельный пробой(ветвь 2).

Если d < l, то лавинный пробой невозможен, т.к. носители практически не сталкиваются с атомами решётки. Но возможно туннелирование носителей (см. туннельный эффект). Для уменьшения вероятности такого пробоя, базу изготавливают низколегированной (с высоким сопротивлением), а также увеличивают d (тогда U пробоя увеличивается).

С) Тепловой пробой.

Обратный ток p-n перехода повышает температуру перехода, что, в свою очередь, приводит к увеличению обратного тока и т.д. Если не принимать мер по отводу тепла, то саморазогрев перехода может привести к тепловому пробою (кривая 3).

Отличительная особенность – участок с отрицательным дифференциальным сопротивлением. Iобр зависит от ширины запрещённой зоны, поэтому тепловой пробой при прочих равных условиях чаще будет наблюдаться в Ge, чем в Si. Обычно I обр малы и тепловой пробой сам по себе редко наступает, но может возникнуть, как сопутствующий лавинному или туннельному пробоям. Если в схеме нет строго ограничивающих компонентов, то тепловой пробой приводит к невозвратимому разрушению прибора.         

 

 



2019-07-03 184 Обсуждений (0)
U                                                                      изменений р – типа увеличивается, следовательно, 0.00 из 5.00 0 оценок









Обсуждение в статье: U                                                                      изменений р – типа увеличивается, следовательно,

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (184)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)