Мегаобучалка Главная | О нас | Обратная связь


Модель переходных процессов в манипуляторе МРЛ-901П



2019-07-04 233 Обсуждений (0)
Модель переходных процессов в манипуляторе МРЛ-901П 0.00 из 5.00 0 оценок




М
одель портального манипулятора МРЛ-901П представлена на рис. 2.1. Деформирующимися элементами в манипуляторе являются: зубчатый ремень, обозначенный пружиной; консольная часть, на которой имеется сосредоточенная масса m. Деформация поперечной консоли обозначена на схеме углом . Исходными данными для расчета такой модели будут: значение подвижной массы m, плечо приложения этой массы l, а также коэффициент натяжения зубчатого ремня, определяемый как отношение прогиба ремня к его длине и влияющий на жесткость, и демпфирование модуля линейного перемещения.

При остановке электроприводов подвижные массы будут продолжать движение под действием инерционных сил, в результате чего точки А и Б займут положение и соответственно, затем остановятся и под действием сил упругой деформации пружины и балки начнут совершать колебательное движения.

Рассматриваемая модель имеет три степени свободы, обозначим независимые обобщенные координаты как , и . Для описания данной модели воспользуемся уравнением Лагранжа второго рода:

(j = 1,2,…,k), (2.1)

где T - кинетическая энергия системы; Q - обобщенная сила; k - количество степеней свободы.

Кинетическая энергия системы с тремя степенями свободы является однородной квадратичной формой обобщенных скоростей [5]:

, (2.2)

Коэффициенты являются функциями координат , и .

Предположим, что обобщенные координаты отсчитываются от положения равновесия, где .

Располагая коэффициенты по степеням и пологая для упрощения записи , получим:

(2.3)

Потенциальная энергия системы:

(2.4)

При этом учитываем, что в положении равновесия обобщенные силы также обращаются в нуль.

В (2.4) для упрощения приняты следующие обозначения:

, , , , , .

Для составления дифференциальных уравнений свободных колебаний в форме уравнений Лагранжа второго рода, выразим потенциальную энергию через обобщенные координаты. Рассмотрим равновесие системы, на которую действуют силы …, . Потенциальная энергия в состоянии устойчивого равновесия имеет минимум, равный нулю, а при вызванном действием сил отклонении от него выражается квадратичной формой вида (2.4).

Элементарная работа всех сил действующих на систему, по принципу возможных перемещений должна быть равна нулю:

. (2.5)

Замечая, что

 

а также приравнивая к нулю коэффициенты при независимых вариациях , и , получаем три уравнения:

, (2.6)

Здесь , и - обобщенные силы для системы сил …, , уравновешивающих потенциальные силы, возникающие при отклонении системы из положения равновесия . Заменяя в (2.6) производные потенциальной энергии их выражениями согласно (2.4), получим систему уравнений, определяющих значение координат , и в положении равновесия:

, (2.7)

причем , и .

Решение системы (2.7) имеет вид:

, (2.8)

где

(2.9)

.

На систему действуют обобщенные силы, которыми являются инерционные силы и силы сопротивления движению. Обычно в сложных системах в целях упрощения [4, 5] силу сопротивления принимают пропорциональной первой степени скорости движения. С целью упрощения условимся, что угол мал и координаты массы m можно записать как . Поэтому на основании кинетостатики можем записать:

, (2.10)

где - обобщенная сила, - коэффициент сопротивления пропорциональный первой степени скорости движения массы m. Так как масса собственно консоли манипулятора МРЛ-901П меньше массы закрепленных на ней рабочих головок, захватов и деталей, для упрощения примем условие, что точка исследования колебаний (практически - рабочий орган манипулятора) совпадает с точкой приложения сосредоточенной массы m.

Сила действует на все звенья манипулятора следовательно:

(2.11)

Коэффициенты в (2.7) будем определять из того, что согласно (2.11) звенья можно рассматривать независимо друг от друга. Положим сначала, что действует только по координате , затем только по координате и наконец только по координате , тогда в выражение (2.7) можно переписать:

, (2.12)

таким образом , используя (2.9) находим:

(2.13)

Коэффициенты , и определяют податливость звеньев манипулятора по координатам , и соответственно. Выражая податливость звеньев через их жесткость, запишем:

, (2.14)

где , и жесткости звеньев по координатам , и соответственно.

Подставляя (2.14) , (2.11) и (2.10) в (2.8) получим:

(2.15)

Для решения этой системы нужно выразить скорость и ускорение массы m через их составляющие:

. (2.16)

Поскольку в манипуляторе суммарную жесткость удобно экспериментально определять, прикладывая соответствующее усилие к его рабочему органу, и так как в конечном итоге необходимо определить положение массы m, координаты которой выражаются как , то для этого достаточно сложить уравнения в выражении (2.15):

(2.17)

или:

, (2.18)

где С - суммарная жесткость звеньев манипулятора.

Анализ показывает, что величина C является переменной и зависит от плеча приложения l сосредоточенной массы m.

Преобразуя (2.18), получаем уравнение описывающие переходный процесс в системе:

. (2.19)

Уравнение (2.19) легко решается классическим способом при следующих начальных условиях:

, (2.20)

 

где - скорость рабочего органа манипулятора в момент выхода на конечную точку.

Выражение (2.19) представляет собой линейное дифференциальное уравнение второго порядка. Будем искать частное решение уравнения в виде:

, (2.21)

где и - произвольные постоянные, которые могут быть определены из начальных условий: при t = 0; и - корни характеристического уравнения:

. (2.22)

Решение уравнения (2.22) будет иметь вид:

(2.23)

Определим произвольные постоянные и , решая систему уравнений:

. (2.24)

Решение системы (2.24) будет иметь вид:

, (2.25)

если учесть (2.20) то:

(2.26)

подставляя (2.26) в (2.21) и с учетом (2.23) имеем:

(2.27)

где - реальная часть; - мнимая часть.

Тогда разделяя реальную и мнимую части в (2.27) получим:

. (2.28)

Учитывая что:

, (2.29)

имеем:

(2.30)

Преобразуя (2.30) получим решение уравнения (2.19):

(2.31)

Прологарифмируем выражение (2.31) предварительно подставив в него значение допустимой погрешности позиционирования:

, (2.32)

где - допустимая погрешность позиционирования.

Преобразуя (2.32) получим выражение для определения времени переходного процесса:

(2.33)

Для расчета жесткости C и коэффициента демпфирования в модели используются экспериментально полученные зависимости. В частности коэффициент демпфирования определяется по осциллограмме затухания колебаний рабочего органа.

Таким образом, время переходного процесса, для данного типа манипулятора при заданной массе положении рабочего органа определяется по выражению (2.33), в котором коэффициенты жесткости и демпфирования предварительно определены экспериментально.



2019-07-04 233 Обсуждений (0)
Модель переходных процессов в манипуляторе МРЛ-901П 0.00 из 5.00 0 оценок









Обсуждение в статье: Модель переходных процессов в манипуляторе МРЛ-901П

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (233)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)