Мегаобучалка Главная | О нас | Обратная связь


На чем основаны ФХМА и какие задачи решают этими методами.



2019-08-13 326 Обсуждений (0)
На чем основаны ФХМА и какие задачи решают этими методами. 0.00 из 5.00 0 оценок




Физико-химические методы анализа, основаны на зависимости физических свойств вещества от его природы, причем аналитический сигнал представляет собой величину физического свойства, функционально связанную с концентрацией или массой определяемого компонента. Физико-химические методы анализа могут включать химические превращения определяемого соединения, растворение образца, концентрирование анализируемого компонента, маскирование мешающих веществ и других. В отличие от «классических» химических методов анализа, где аналитическим сигналом служит масса вещества или его объем, в физико-химические методы анализа в качестве аналитического сигнала используют интенсивность излучения, силу тока, электропроводность, разность потенциалов и др. Т.о., физико-химические методы анализа основаны на сочетании химических реакций аналитов с последующей регистрацией их характеристических физических свойств, т.е. определяемое вещество с помощью химической реакции переводят в такую аналитическую форму, в которой оно проявляет характеристическое физическое свойство, очень чувствительное к малейшим изменениям состава или концентрации. Регистрируемую при этом физическую величину, функционально связанную с концентрацией или содержанием аналита, называют аналитическим сигналом. Важное практическое значение имеют методы, основанные на исследовании испускания и поглощения электромагнитного излучения в различных областях спектра. К ним относится спектроскопия (например, люминесцентный анализ, спектральный анализ, нефелометрия и турбидиметрия и другие). К важным физико-химическим методам анализа принадлежат электрохимические методы, использующие измерение электрических свойств вещества (кондуктометрия, кулонометрия, потенциометрия и т. д.), а также хроматография (например, газовая хроматография, жидкостная хроматография, ионообменная хроматография, тонкослойная хроматография). Успешно развиваются методы, основанные на измерении скоростей химических реакций (кинетические методы анализа), тепловых эффектов реакций (термометрическое титрование, смотри Калориметрия), а также на разделении ионов в магнитном поле (масс-спектрометрия).

Физико-химические методы анализа часто используют при определении низких содержаний (порядка 10-3% и менее), где классические химические методы анализа обычно неприменимы. В области средних и высоких концентраций химические и физико-химические методы анализа успешно конкурируют между собой, взаимно дополняя друг друга. Физико-химические методы анализа развиваются в направлении поиска новых химических аналитических свойств вещества, увеличения точности анализа, конструирования новых прецизионных аналитических приборов, совершенствования существующих методик и автоматизации анализа. Интенсивно развивается в последнее время проточно-ижкекционный анализ - один из наиболее универсальных вариантов автоматизированного анализа, основанный на дискретном введении микрообъемов анализируемого раствора в поток жидкого носителя с реагентом и последующего детектирования смеси тем или иным физико-химическим методом.

78.Краткая характеристика наиболее информативных ФХМА методов, применяемых для анализа органических веществ. Физико-химические методы, наиболее часто используемые для установления структуры органического вещества: 1) ИК- и КР-спектроскопии позволяют провести групповой анализ, если соединение известно – идентифицировать по базам данных. Удобны для оценки чистоты вещества. Быстры и недороги. Довольно чувствительные методы. ИК-спектр представляет собой спектр поглощения в инфракрасной области 4000-400 см-1, которое появляется в процессе поглощения колебательной энергии молекулами.
При обычной температуре химические связи в любой молекуле в силу её взаимодействий с соседними молекулами испытывают колебания. Поглощение молекулами энергии ИК-излучения, которое происходит ступенчато, увеличивает амплитуду этих колебаний. Это отражается на спектре в виде пиков. В них активны те нормальные колебания, которые вызывают изменение дипольного момента молекулы. Интенсивность полосы в ИК-спектре тем больше, чем сильнее меняется дипольный момент при данном нормальном колебании. У молекулы с ионными связями интенсивность полос поглощения будет максимальной.
Молекула с N атомами должна иметь столько же степеней свободы, сколько их имеют все атомы вместе. Тогда общее число степеней свободы, которыми располагает молекула равно 3N, а оставшиеся степени свободы 3N – 6 относятся к колебательному движению. В линейных молекулах вращение происходит только совместно с определёнными колебаниями, поэтому для колебательного движения остаётся 3N – 5 степеней свободы. Таким образом, можно рассчитать количество основных пиков в спектре.
Нормальные колебания подразделяют на валентные, характеризующие движение атомов по осям связей, и деформационные, при которых изменяются валентные углы . Частоты валентных колебаний значительно выше частот деформационных. В свою очередь валентные колебания бывают симметричные и асимметричные, а деформационные – ножничные, веерные, симметричные, маятниковые плоские, крутильные неплоские, асимметричные в зависимости от направления смещения ядер[5].
Кроме основных частот в спектрах наблюдаются обертоны и составные частоты, но они проявляются в виде слабых полос. Обертоны соответствуют частотам, кратным какой-либо основной частоте, а составные частоты являются суммой или разностью двух различных фундаментальных частот. Иногда в спектрах могут проявляться интенсивные полосы, которые возникают в результате резонанса Ферми – это явление, которое наблюдается как кажущееся расщепление основной полосы, например С=О, на два пика, возникает вследствие распределение интенсивности между основной полосой и обертоном. 2) УФ- и видимая спектроскопии позволяет выявить хромофорные группы, удобны для количественного анализа. Метод молекулярной абсорбционной спектроскопии в УФ-области основан на измерении поглощения света. Его измеряют путём сравнения интенсивности падающего на образец света и прошедшего сквозь него. Объектом данного метода являются растворы вещества в растворителе и сам растворитель, который является раствором сравнения.
Поглощение в ближней УФ-области (400-200 нм) всегда связано с наличием ненасыщенных групп или атомов, несущих неподелённые пары электронов. Группа, которая приводит к поглощению, называется хромофором.
Электроны, окружающие ядро, занимают энергетические уровни со строго фиксированной энергией. Орбиталь считается заполненной, если она содержит два электрона с противоположными спинами. Квант излучения проходящей частоты может возбудить переход одного электрона на более высокую орбиталь, которая имеет незанятое место. Переходами такого типа и объясняются УФ-спектры.
Существенными элементами - хромофорами,- которые обуславливают наличие электронных спектров органических молекул, являются кратная связь и неподелённая электронная пара. 3) ЯМР-спектроскопия позволяет определить атомы, входящие в молекулу, и то, как они между собой соединены химическими связями, т.е. определить или подтвердить структуру вещества (основная задача метода). Малочувствителен и малопригоден для анализа смесей. 4) ЭПР-спектроскопия изучает электронное строение молекул. Результаты зависят от электронного строения молекул и частиц (наличия неспаренных электронов). Широко используется при исследовании радикалов и радикальных процессов. 5) Рентгеновские методы: рентгеноструктурный и рентгенофазовый методы анализа позволяют вести анализ порошков на предмет определения параметров кристаллических решеток, рентгеноструктурный метод в дополнение к параметрам решеток дают «фотографию» молекулы и ее окружения. 6) Масс-спектрометрия и хроматография позволяют узнать массу молекулы, ее брутто-формулу, хроматография при этом помогает производить анализ смеси за счет разделения компонентов во времени попадания на детектирующий масс-спектрометр. При наличии баз данных позволяет легко идентифицировать компоненты смеси и сами соединения. Высокая чувствительность (в ряде случаев – нанограммы образца). 7) Тонкослойная хроматография
Хроматография – физический метод анализа, основанный на разделении веществ за счёт различных скоростей перемещения молекул. В основе хроматографических процессов лежат явления сорбции и десорбции.
Тонкослойная хроматография (ТСХ) является разновидностью жидкостной хроматографии, в которой разделение веществ происходит на открытом слое адсорбента, а подвижной фазой является жидкость.
Метод хроматографии в тонких слоях имеет ряд своих преимуществ: быстрота выполнения анализа, относительная простота метода, экономичность и универсальность. Метод используется для разделения и анализа микроколичеств веществ, качественной и количественной оценки примесей в продуктах пищевой и химической промышленности.
Хроматографический процесс в тонком слое адсорбента обеспечивается динамическим передвижением подвижной фазы (растворитель) через стационарную неподвижную фазу (адсорбент) за счёт капиллярных сил. В результате передвижения смеси элюента и исследуемых веществ происходит разделение анализируемой смеси на компоненты, основанное на различной скорости их перемещения в слое адсорбента.Основным в ТСХ является элютивный процесс независимого движения компонентов по пластине с постепенным размыванием хроматографических зон. Скорость определяется соотношением времен движения в токе элюента и удерживания за счёт сорбции. В конце процесса каждая зона проходит характерное расстояние.
Пластины для ТСХ состоят из трёх элементов: подложка (стеклянные пластины, алюминиевая фольга), слой адсорбента и связующее (гипс, крахмал, силикаты щелочных металлов). Универсальным и наиболее распространённым адсорбентом для ТСХ является силикагель.
К растворителю-элюенту предъявляют следующие требования: полная растворимость в нём всех компонентов пробы, относительная летучесть, низкое значение Rf, хорошая смачиваемость.
Для нанесения проб используют различные тонкие капилляры. Пробу наносят на стартовую линию приблизительно в 1-1,5 см от края. Пластину помещают вертикально в хроматографическую камеру, на дно которой налит элюент. В качестве камеры можно использовать любой сосуд прямоугольной или цилиндрической формы. Через некоторое время, когда элюент достаточно высоко поднимется по пластине, но не дойдет до её верхнего края, пластину вынимают и дают ей высохнуть, отметив границу, до которой поднялся растворитель.
Для проявления пластин используют следующую классификацию способов: 1) без применения химических реагентов, регистрация поглощения в области УФ и собственной флуоресценции веществ (с помощью введения в слой адсорбента индикаторов); 2) с применением химических реагентов – универсальные(концентрированные кислоты – серная, к которой можно добавить азотную кислоту или окислители(перманганат, дихромат калия), фосфорная, хлорная), специфические.
В ТСХ важной характеристикой степени разделения веществ является величина Rf - отношение длины пробега вещества к длине пробега растворителя. Для того чтобы определить коэффициент удерживания Rf , нужно измерить расстояние от стартовой линии до центра пятна и до финишной линии, и подсчитать их отношение. Но Rf в ТСХ является относительной величиной и сильно зависит от условий эксперимента. Оно весьма просто характеризует положение пятна на пластине. Этот параметр не несёт никакой информации о хроматографическом процессе и о других «ограничивающих условиях», которые привели к полученному результату.

79.Побочные конкурирующие химические реакции, влияние этих реакций на основную реакцию аналита с реагентом и количественный учёт этого влияния.
Ионы осадка могут вступать в побочные реакции.

ML, MLn HA, HmA

Для учёта используют условную константу равновесия.



2019-08-13 326 Обсуждений (0)
На чем основаны ФХМА и какие задачи решают этими методами. 0.00 из 5.00 0 оценок









Обсуждение в статье: На чем основаны ФХМА и какие задачи решают этими методами.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (326)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)