Конечно-разностный метод решения краевых задач.
для обыкновенных дифференциальных уравнений.
Примером краевой задачи является двухточечная краевая задача для обыкновенного дифференциального уравнения второго порядка:
с граничными условиями, заданными на концах отрезка [a; b]:
Следует найти такое решение у(х) на этом отрезке, которое принимает на концах отрезка значения у0, у1. Если функция Кроме граничных условий, задаваемых на концах отрезка и называемых граничными условиями первого рода, используются еще условия на производные от решения на концах - граничные условия второго рода:
или линейная комбинация решений и производных – граничные условия третьего рода:
где Возможно на разных концах отрезка использовать условия различных типов. Наиболее распространены два приближенных метода решения краевой задачи: - метод стрельбы (пристрелки); - конечно-разностный метод. Используя конечно-разностный метод, рассмотрим двухточечную краевую задачу для линейного дифференциального уравнения второго порядка на отрезке [а; b].
Введем разностную сетку на отрезке [а; b]:
Решение задачи будем искать в виде сеточной функции:
предполагая, что решение существует и единственно. Введем разностную аппроксимацию производных следующим образом:
Подставляя эти аппроксимации производных в исходное уравнение, получим систему уравнений для нахождения yk:
Приводя подобные члены и учитывая, что при задании граничных условий первого рода два неизвестных уже фактически определены, получим систему линейных алгебраических уравнений с трехдиагональной матрицей коэффициентов:
Для этой системы уравнений при достаточно малых шагах сетки h и q(xk) < 0выполнены условия преобладания диагональных элементов:
что гарантирует устойчивость счета и корректность применения метода прогонки для решения этой системы. В случае использования граничных условий второго и третьего рода аппроксимация производных проводится с помощью односторонних разностей первого и второго порядков:
В первом случае линейная алгебраическая система аппроксимирует дифференциальную задачу в целом только с первым порядком (из-за аппроксимации в граничных точках), однако сохраняется трех диагональная структура матрицы коэффициентов. Во втором случае второй порядок аппроксимации сохраняется везде, но матрица линейной системы не трехдиагональная. Пример. Решить краевую задачу:
Здесь р(х) = х; q(x) = 1; f(x) = 0; N = 5; x0 = 0; x1 = 0,2; x2 = 0,4; x3 = 0,6; x4 = 0,8; x5 = 1; Во всех внутренних узлах отрезка [0; 1] после замены производных их разностными аналогами получим:
На левой границе y0 = 1, на правой границе аппроксимируем производную односторонней разностью 1-го порядка:
С помощью группировки слагаемых, приведения подобных членов и подстановки значений xk, а также с учётом у0 = 1,получим систему линейных алгебраических уравнений:
В результате решения системы методом Крамера в Excel, получим:
Решением краевой задачи является табличная функция:
Расчетная часть 3.1. Найти действительные корни уравнения Решение: Для нахождения корня уравнения предварительно отделим корень уравнения графическим методом, записав уравнение в виде:
Построим в осях ХОУ графики функций: Линии графиков пересекаются в единственной точке с абсциссой х0, лежащей в интервале [0,5; 0,6], т.е. а = 0,5; b = 0,6. Значение функции
Т.к. знаки различны, то уравнение имеет единственный корень в интервале [0,5; 0,6]. 3.1.1. Уточнение корня методом простых итераций. Приведём исходное уравнение к виду: φ(x) = x + С·f(x). Т.к. первая производная заданной функции
Примем С = – 1. Т.о. итерационная функция приобретает вид: φ(x) = x – f(x). Делаем первую итерацию:
Делаем вторую итерацию:
Делаем третью итерацию:
Делаем четвёртую итерацию:
Делаем пятую итерацию:
Делаем шестую итерацию:
Делаем седьмую итерацию:
Делаем восьмую итерацию:
Делаем девятую итерацию:
Продолжая далее, получаем:
На 19-ой итерации изменение шестого знака после запятой, позволяет утверждать, что пятый знак – после запятой – 5. Т.о. значение корня с заданной точностью: х0 = 0,57615 3.1.2. Уточнение корня методом касательных (метод Ньютона): Т.к. уравнение то же, то интервал, содержащий искомый корень, оставляем тот же [0,5; 0,6], т.е. а = 0,5; b = 0,6. Находим первую и вторую производную функции
Очевидно необходимые условия выполняются, т.к.:
Выполняем первое приближение (х0 = 0,5):
Выполняем второе приближение (х1 = 0,571429):
Выполняем третье приближение (х2 = 0,576128:
Выполняем четвёртое приближение (х3 = 0,576146):
В пределах заданной точности f(x2) оказался равен нулю, т.е. требуемая точность достигнута за 4 шага. Значение корня с заданной точностью:
3.2. Вычислить приближенное значение интеграла а) трапеций (n = 10); б) Симпсона (n = 10); в) Гаусса (n = 5). Решение: Ограничимся в расчётах 4 знаками после запятой. Для приближённого вычисления определённого интеграла методом трапеций используется формула:
Разобьём интервал (–1; 9) на n = 10 отрезков (h =1) и вычислим значения подынтегрального выражения для начала и конца каждого отрезка.
Тогда по формуле трапеций, имеем:
Используя формулу Симпсона (формулу параболических трапеций) в виде:
Применяя к исходному интегралу квадратурную формулу Гаусса, имеем:
Для n = 5, коэффициенты ti, представляющие нули полинома Лежандра и коэффициента Аi (эти значения табулированы в справочных таблицах) составляют:
Тогда:
3.3. Построить интерполяционные многочлены Лагранжа и Ньютона по следующим табличным данным:
Проверить совпадение значений интерполирующего многочлена с табличными значениями функции в узлах интерполяции. Решение: Интерполяционный полином Лагранжа для четырёх узлов интерполяции записывается в виде:
Подставим численные значения из заданной таблицы:
Для составления интерполяционного полинома в форме Ньютона, вычислим разности первого порядка для заданной таблицы по формуле:
Вычислим разности второго порядка по формуле:
Вычислим разность третьего порядка по формуле:
Тогда интерполяционный полином Ньютона Ln(x) приобретает следующую форму:
Расчёты показывают, что оба интерполяционных полинома практически одинаковы, т.е. интерполяция ряда точек полиномом третьей степени осуществляется единственным образом. По заданным узлам интерполяции хi значения полинома по этому уравнению составляют:
Расчётные значения практически совпадают с заданными значениями f(x). По полученному уравнению построена кривая, проходящая через узлы интерполяции.
3.4. Найти оценки параметров линейной
Построить чертеж: на плоскости нанести экспериментальные точки Решение: Коэффициенты "a0 и а1" линейной модели найдём, выполнив необходимые вычисления. Расчеты сведем в таблицу:
Тогда:
Т.о. линейная зависимость у = а0 + а1х имеет вид: у = 2,08865 + 0,0473х. По этой зависимости определены выровненные значения Коэффициенты а0, а1, а2 квадратичной зависимости найдём, также выполнив необходимые расчёты в таблице:
Составим систему уравнений:
Решение этой системы методом Крамера даёт:
Т.о. квадратичная зависимость у = а0 + а1х + а2х2 имеет вид: у = 2,12433 + 0,00729·х + 0,006996·х2.
Эмпирическая ломаная, а также линии линейной и квадратичной модели построены на рисунке.
Результаты и выводы. 1. Т.о. интерполяционный полином Лагранжа и Ньютона, построенный по 4 заданным узлам интерполяции имеет вид:
Значения функции, вычисленные по этому полиному третьей степени, точно совпадают с заданными значениями в узлах интерполяции. Полученное уравнение позволяет найти приближённые значения функции в любых промежуточных точках от х1 = 2,9 до х4 = 9,7. 2. Применение метода минимальных квадратов (МНК) к аппроксимации пяти экспериментальных точек линейной зависимостью вида у = а0 + а1х, т.е. прямой линией и квадратичной зависимостью вида – линейная зависимость реализована уравнением: у = 2,0887 + 0,0473х – квадратичная зависимость реализована уравнением: у = 2,1243 + 0,0073·х + 0,007·х2. Судя по остаточной сумме квадратов отклонений, квадратичная зависимость несколько лучше аппроксимирует экспериментальные данные, т.к. для неё остаточная сумма квадратов отклонений меньше, чем для линейной функции. Список использованной литературы 1. Самарский А.А. Гулин А.В. Численные методы. М. МГУ. 1989 год. 2. Н. С. Бахвалов; Н.П. Жидков; Г.М. Кобельков. Численные методы. М 2003 год; 3. В.А. Буслов, С.Л.Яковлев. Численные методы и исследование функций. СПГУ. Курс лекций. СПБ 2001 г 4. Г.А. Зуева. Метод наименьших квадратов и его применение. Электронное учебное пособие. Иваново, 2009
Популярное: Почему стероиды повышают давление?: Основных причин три... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1749)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |