П2.2.2. Методы сглаживания временного ряда (выделение неслучайной составляющей)
Методы выделения неслучайной составляющей в траектории, отражающей поведение временного ряда, подразделяются на два типа. Методы первого типа (аналитические) основаны на допущении, что известен общий вид неслучайной составляющей в разложении (1.1.1) f(t) = c1fтр(t) + c2j(t) +c3y(t). (П2.8) Например, если известно, что неслучайная составляющая временного ряда описывается линейной функцией времени f(t) = q0 + q1t, где q0 и q1 - некоторые неизвестные параметры модели, то задача ее выделения (задача элиминирования случайных остатков или задача сглаживания временного ряда) сводится к задаче построения хороших оценок и для параметров модели. Методы второго типа (алгоритмические) не связаны ограничительным допущением о том, что общий аналитический вид искомой функции (П2.8) известен исследователю. В этом смысле они являются более гибкими, более привлекательными. Однако «на выходе» задачи они предлагают исследователю лишь алгоритм расчета оценки для искомой функции f(t) в любой наперед заданной точке t и не претендуют на аналитическое представление функции (П2.8). Аналитические методы выделения (оценки) неслучайной составляющей временного ряда. Эти методы реализуются в рамках моделей регрессии, в которых в роли зависимой переменной выступает переменная xt, а в роли единственной объясняющей переменной - время t. Таким образом, рассматривается модель регрессии вида xt = f(t, q) + e t, t = 1,…, T, в которой общий вид функции f(t, q) известен, но неизвестны значения параметров q = (q0, q1,…, q m). Оценки параметров строятся по наблюдениям . Выбор метода оценивания зависит от гипотетического вида функции f(t, q) и стохастической природы случайных регрессионных остатков e t. Алгоритмические методы выделения неслучайной составляющей временного ряда (методы скользящего среднего). В основе этих методов элиминирования случайных флуктуаций в поведении анализируемого временного ряда лежит простая идея: если «индивидуальный» разброс значений члена временного ряда xt около своего среднего (сглаженного) значения a характеризуется дисперсией s2, то разброс среднего из N членов временного ряда (x1 + x2 +…+ xT) / N около того же значения a будет характеризоваться гораздо меньшей величиной дисперсии, а именно дисперсией, равной s2 / N. А уменьшение меры случайного разброса (дисперсии) и означает как раз сглаживание соответствующей траектории. Поэтому выбирают некоторую нечетную «длину усреднения» N = 2m + 1, измеренную в числе подряд идущих членов анализируемого временного ряда. А затем сглаженное значение временного ряда xt вычисляют по значениям xt - m, xt - m+1,…, xt, xt+1,…, xt+m по формуле (П2.9) где wk (k = -m, - m + 1,…, m) - некоторые положительные «весовые» коэффициенты, в сумме равные единице, т.е. wk > 0 и . Поскольку, изменяя t от m + 1 до T - m, мы как бы «скользим» по оси времени, то и методы, основанные на формуле (П2.9), принято называть методами скользящей средней (МСС). Очевидно, один МСС отличается от другого выбором параметров m и wk. Определение параметров wk основано на следующей процедуре. В соответствии с теоремой Вейерштрасса любая гладкая функция f(x) при самых общих допущениях может быть локально представлена алгебраическим полиномом подходящей степени p. Поэтому берем первые 2m + 1 членов временного ряда x1,…, x2m+1, строим с помощью МНК полином степени p, аппроксимирующий поведение этой начальной части траектории временного ряда, и используем этот полином для определения оценки сглаженного значения f(t) временного ряда в средней (т.е. (m + 1)-й) точке этого отрезка ряда, т.е. полагаем . Затем «скользим» по оси времени на один такт и таким же способом подбираем полином той же степени p к отрезку временного ряда x2,…, xm+2 и определяем оценку сглаженного значения временного ряда в средней точке сдвинутого на единицу отрезка временного ряда, т.е. , и т.д. В результате мы найдем оценки для сглаженных значений анализируемого временного ряда при всех t, кроме t = 1,…, m и t = T,… T - m + 1. Подбор наилучшего (в смысле критерия МНК) аппроксимирующего полинома к траектории анализируемого временного ряда приводит к формуле вида (П2.9), причем результат не зависит от того, для какого именно из «скользящих» временных интервалов был осуществлен этот подбор. Метод экспоненциально взвешенного скользящего среднего (метод Брауна [ Brown (1963)]). В соответствии с этим методом оценка сглаженного значения в точке t определяется как решение оптимизационной задачи вида (П2.10) где 0 < l < 1. Следовательно, веса l k в критерии Q(f) обобщенного («взвешенного») МНК уменьшаются экспоненциально по мере удаления наблюдений xt - k в прошлое. Решение оптимизационной задачи (П2.10) дает: (П2.11) В отличие от обычного МСС здесь скользит только правый конец интервала усреднения и, кроме того, веса экспоненциально уменьшаются по мере удаления в прошлое. Формула (П2.11) дает оценку сглаженного значения временного ряда не в средней, а в правой конечной точке интервала усреднения.
Популярное: Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (244)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |