Формула полной вероятности
Определение. Пусть задано некоторое вероятностное пространство (Ω, F, P). Тогда совокупность событий А1, А2, …, Аn называется полной группой событий, если выполняются следующие условия: а) А1 А2 …, А n =Ω; б) А i Aj =Ø, ; г) Р(Ак)>0. Пусть дано событие А, оно может наступить при появлении одного из несовместных Событий В1, В2,…, В n, которые образуют полную группу. Нам также известны вероятности , , …, . Как можно найти вероятность события А? Ответ на этот вопрос дает теорема: Теорема. Вероятность события А, которое может наступить лишь при условии появлении одного из несовместных событий В1, В2,…, В n , образующих полную группу, равна сумме произведений вероятности каждого из этих событий на собственную условную вероятность: P( А ) = . Эту формулу также называют формулой полной вероятности. Формула Бейеса
Составим задачу: Пусть дано событие А, оно может наступить при появлении одного из несовместных Событий В1, В2,…, В n, которые образуют полную группу. Так как нам заранее не известно, какое событие наступит, их называют гипотезами. Допустим, что произведено испытание в результате, которого появилось событие А. Поставим своей задачей определить как изменились вероятности гипотез, в связи с тем что событие А уже наступило. Другими словами определим следующие условные вероятности: , , …, . Определить данные вероятности можно при помощи формулы Бейеса: , Заменив P( А ) = получим: . Решение задач. Задача 1. Бросается игральный кубик. Какова вероятность того, что выпало число очков, больше трех (событие А), если известно, что выпала четная грань (событие В)? Решение. Событию В соответствует выпадение чисел 2,4,6. Событию А выпадение чисел 4, 5, 6. Событию А В – 4, 6. Поэтому используя формулу условной вероятности получи: . Задача 2. Для контроля продукции лыжной фабрики из трех партий лыж взята на проверку одна деталь. Какова вероятность выявления бракованной продукции, если в одной партии 2/3 лыж бракованные, а в двух других все доброкачественные? Решение. Пусть событие В= «Взятая деталь бракованная», Ак= «деталь берется из к-ой партии», тогда вероятность Р(Ак)=1/3, где к=1; 2; 3. Пусть в первой партии находятся бракованные лыжи, значит , тогда в двух других парий нет бракованных лыж, то есть: . Применяя формулу полной вероятности получим: P ( B )= . Задача 3. Прибор состоит из двух узлов; работа каждого узла необходима для работы прибора в целом. Надежность (вероятность безотказной работы) в течении времени t первого узла равна p1, второго р2. Прибор испытывался в течении времени t, в результате чего обнаружено, что он отказал. Найдите вероятность того, что отказал первый узел, а второй исправен. Решение. Пусть событие В= «прибор отказал», событие А1= «Оба узла исправны», А2= «первый узел отказал, а второй испарвен», А3= «первый узел исправен, а второй узел отказал», А4= «Оба узла отказали». Эти события образуют полную группу событий. Найдем их вероятности: Р(А1)=р1р2 Р(А2)=(1-р1)р2 Р(А3)=р1(1-р2) Р(А4)=(1-р1)(1-р2). Так как наблюдалось событие В, то: Р(В/А1)=0, Р(В/А2)= Р(В/А3)= 1. Применяя формулу Бейеса получим: .
Популярное: Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (209)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |