Мегаобучалка Главная | О нас | Обратная связь


Биноминальное распределение



2019-12-29 183 Обсуждений (0)
Биноминальное распределение 0.00 из 5.00 0 оценок




 

Пусть производится n независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Вероятность наступления события во всех испытаниях постоянна и равна р, тогда вероятность не появления q =1- p . Рассмотрим в качестве дискретной случайной величины Х число появления события А в этих испытаниях.

Найдем закон распределения величины Х. Событие А в n испытаниях может появиться либо не появиться, Следовательно Х может принимать следующие значения х1=0, х2=1, х3=2, и так далее. Вероятность данных значений можно найти используя формулу Бернулли:

,

Биноминальным называют распределение вероятностей, определяемое формулой Бернулли. Данный закон назван биноминальным потому, что правую часть равенства  можно рассматривать, как общий член разложения бинома Ньютона.

Напишем биноминальный закон в виде таблицы:

 

Х n n-1 k 0
p

 

3.4Распределение Пуассона

 

Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р. Для определения вероятности к появлений события А используют формулу Бернулли. Если n велико то пользуются формулой ЛапласаЮ однако эта формула непригодна, если вероятность события мала (p<0.1). В этих случаях (n велико, а р – мало). Используют формулу Пуассона:

,

Где .

Эта формула выражает закон распределения Пуассона вероятностей массовых и редких событий. Имеются специальные таблицы, пользуясь которыми можно найти значения , если нам известны  и к.

3.5 Математическое ожидание и дисперсия

 

Как известно закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Также для решения многих задач не нужно знать распределения случайной величины, а достаточно знать лишь некоторые обобщающие числовые хараткеристики этого распределения.

Одной из таких характеристик является математическое ожидание. Для более наглядного определения рассмотрим подход к этому понятию на конкретном примере.

Пусть имеется дискретная случайная величина Х, которая может принимать значения х1, х2, …, х n. Вероятности которых соответственно равны р1, р2, …, р n. Тогда математическое ожидание М(Х) случайной величины Х определяется равенством:

.

Если дискретная случайная величина Х принимает счетное множество всевозможных значений, то

,

Причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной

М(С)=С.

2. Постоянный сомножитель можно выносить за знак математического ожидания

М(СХ)=СМ(Х).

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий

М(ХУ)=М(Х)М(У).

4. Математическое ожидание числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании

М(Х)= np .

Для непрерывных случайных величин дисперсию можно найти по следующей формуле:

.

На практике часто требуется оценить рассеяние возможных значений случайно величины вокруг ее среднего значения. Например в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена. Именно такие задачи решает дисперсия.

Дисперсией случайной величины Х называется математическое ожидание квадрата отклонений случайной величины от ее математического ожидания. Дисперсия обозначается, как D ( x )

D (Х)= M [ X -М(Х)]2.

Для вычисления дисперсии часто бывает удобно пользоваться следующей формулой:

Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания

D (Х)= M ( X )2-[М(Х)]2.

Свойства дисперсии:

1. Дисперсия постоянной величины С равна 0

D (С)=0.

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

D (СХ)=С2 D (Х).

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин

D (Х+У)= D ( X )+ D (У).

4. Дисперсия разности двух независимых случайных величин равна сумме их дисперсий

D (Х-У)= D ( X )+ D (У).

5. дисперсия числа появлений события А в n независимых испытаниях, в каждом из которых вероятность р появления события постоянна, равна n произведению числа испытаний на вероятности появления и не появления события в одном испытании:

D (Х)= npq .

Для оценки рассеяния всевозможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и другие величины.

Средним квадратическим отклонением величины Х называют квадратный корень из дисперсии

.



2019-12-29 183 Обсуждений (0)
Биноминальное распределение 0.00 из 5.00 0 оценок









Обсуждение в статье: Биноминальное распределение

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (183)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)