Мегаобучалка Главная | О нас | Обратная связь


Биокибернетическое определение эволюции



2019-12-29 348 Обсуждений (0)
Биокибернетическое определение эволюции 0.00 из 5.00 0 оценок




С точки зрения общих принципов кибернетики эволюция пред­ставляет собой процесс прогрессивной оптимизации интегральной системы жизни. Эта оптимизация происходит по указанным выше структурным, функциональным, термодинамическим, информацион­ным и другим показателям на всех уровнях иерархической системы жизни — субклеточном, клеточном, органном, индивидуальном, ви­довом и биоценотическом. Наступающие на каком-либо из этих Уровней прогрессивные адаптации неизбежно вызывают взаимо­обусловленные изменения на всех остальных уровнях. Например, развитие физиологического механизма теплорегуляции обусловило, с одной стороны, глубокие перестройки метаболизма клеток тепло­кровных животных, в частности ускорение обменных процессов, а с другой стороны, вызвало коренные изменения в экологии их видов, в частности резкое увеличение ареалов обитания и снятие сезонных ограничений активной деятельности.

Однако не все уровни интегральной биологической системы равноценны по своей роли в механизме эволюции живых существ, происходящих в природе. По мнению И. И. Шмальгаузена (1961) наиболее существенным звеном, от которого как от первичного обычно начинаются эволюционные преобразования, является попу. ляция—элементарная эволюирующая единица. Именно в популя­ции впервые возникают перестройки, которые затем распространя­ются «вверх» и «вниз» по иерархической структуре жизни.

Популяция находится под непрерывным воздействием всей мас­сы абиотических и биотических воздействий внешней среды, обо­значаемой как биогеоценоз (В. Н. Сукачев, 1945). Как очень слож­ная система биогеоценоз также организуется на основе некоторых •общих принципов взаимодействия его элементов, из которых важ­ным фактором эволюции является борьба за существование.

Как видно из приведенной ниже схемы, цикл эволюционных пре­образований популяции начинается с воздействия биогеоценоза на популяцию путем прямого и косвенного истребления ее особей. Этот входной канал несет информацию о состоянии внешней среды. Затем происходит естественный отбор фенотипов внутри популяции и меняется наследственная структура. Путем размножения новые свойства усиливаются и генетически закрепляются. Наследственная информация реализуется в новой фенотипической форме. Наконец, преобразованная популяция образует выходной канал, несущий информацию о ее состоянии путем активной деятельности особей, захватывающих жизненные средства из биогеоценоза.

Кибернетическая схема регуляции эволюционного процесса

(по И. И. Шмальгаузену, 1961)

В зависимости от приспособительного значения наступивших из­менений обратная связь через фенотип может иметь разное на­правление. Более приспособленные фенотипы размножаются, и эта движущая форма естественного отбора является механизмом положительной обратной связи. В случаях, когда новые фенотипы оказываются менее приспособленными, они гибнут, происходит воз­вращение к прежнему фенотипу, и такая стабилизирующая форма естественного отбора является механизмом отрицательной обрат­ной связи.

 

 

Открытый характер живых систем. Для понимания процессов, протекающих в биосистеме, необходимо учи­тывать две стороны ее функционирования. Одна из них связана с открытым характером системы — это процессы получения, накопления, передачи и использования ве­ществ, энергии и информации. Эти процессы обеспечива­ют возможность сохранения структуры, рост и выполне­ние всех специфических функций биологической сис­темы.

Рис. 1. Схема потоков энергии и информации в организме (по Т. Уотермену).

Другая сторона функционирования, связанная с уп­равлением, включает восприятие, хранение, переработку и использование информации. Информационно-управля­ющие механизмы в системе определя­ют, какие вещественные и энергети­ческие процессы и с какой скоростью происходят в ней. Наиболее общей за­дачей управляющих систем организма является сохране­ние его основы, со­здание благоприят­ных условий для ее

функционирования при изменяющихся условиях внеш­ней среды. Как отмечает Г. Уотермен, кибернетические механизмы для того и существуют, чтобы обеспечить ста­билизацию и сохранение энергетической части организ­ма [132].

На рис. 1 показана схема потоков энергии и информа­ции в организме животного. Энергетическая часть орга­низма обозначена как метаболическая система, а управля­ющая часть содержит три блока — генетическое управле­ние, физиологическое управление, эффекторы.

Структура организма поддерживается механизмами генетического управления. Получая от остальных систем энергию и информацию, генетическая система управляет процессами синтеза необходимых веществ и поддержива­ет жизнедеятельность остальных систем организма. Процессы в генетической части протекают достаточно медленно, для нее характерны долгие интервалы времени, связанные с процессами роста, становления организма и его старения, процессы регенерации тканей и другие. Поведенческие реакции организма осуществляются си­стемой физиологического управления. Процессы в физи­ологических системах управления организма протекают значительно быстрее, чем в генетической. Поэтому гене­тическая система образует структуру биосистемы, в то время как быстрые поведенческие и физиологические процессы определяют ее функцию. Организация живого есть единство структуры и функции — устойчивости и подвижности. «То, что называется структурой, является медленным процессом большой продолжительности: то, что называют функцией, является быстрыми процессами короткой продолжительности» [121]. Таким образом, само строение биосистемы отражает две главнейшие ее характеристики — процессы обмена веществ (открытый характер живых систем) и процессы управления.

Понятие открытой системы впервые было введено в обиход биологической науки Л. фон Берталанфи в 1932 г. [38]. Для такой системы характерно, что в нее постоянно извне вводятся вещества, которые внутри системы под­вергаются различным преобразованиям. В результате процессов синтеза (анаболизма) в системе возникают компоненты более высокой сложности, утилизируемые организмом. Одновременно происходят процессы распада (катаболизма), конечные продукты которого выводятся из системы.

Одной из наиболее характерных черт открытых систем является то, что в них достигается состояние под­вижного равновесия. При этом структура системы оста­ется постоянной, но это постоянство сохраняется в про­цессе непрерывного обмена и движения составляющего ее вещества.

Если обозначить общую скорость расходования не­которого вещества в биосистеме через w, общую скорость поступления этого вещества через у, а его количество в биосистеме через х, то можно записать очевидное уравне­ние

Это уравнение иногда называют уравнением Берта­ланфи. В современной литературе [162] открытая систе­ма часто представляется в виде совокупности отдельных блоков-компартментов, между которыми происходит об­мен веществами. Тогда процессы в открытой системе, вызванные наличием различных концентраций вещест­ва в разных компартментах и в окружающей среде, описываются обыкновенными дифференциальными урав­нениями. Так, если обмен веществом между компартмен-тами и средой определяется законом диффузии, когда скорость потока пропорциональна разности соответству­ющей концентрации вещества, то уравнения системы имеют вид

где п — число компартментов в системе; xi концентра­ция вещества в i-м компартменте; kij коэффициенты диффузии, i = 1,2,...,п; j = 1, 2, ..., n; kij ³ 0; v — концентрация вещества в окружающей среде; ki0 ко­эффициенты диффузии на границах системы.

Традиционной методологической основой описания биологических систем является термодинамика открытых систем [НО]. Если термодинамическая система не обме­нивается со средой веществом, то она называется замкну­той.. Изменения динамических переменных х, описыва­ющих замкнутую систему вблизи равновесия, подчиня­ются так называемым уравнениям Онзагера

Пусть матрица L, составленная из коэффициентов 1ц, имеет только вещественные и отрицательные собственные значения. Это значит, что система (1.3) имеет стационар­ное равновесное состояние, которое достигается в ходе апериодического переходного процесса.

Энтропия S в замкнутых системах либо не меняется (при обратимых процессах), либо возрастает при необра­тимых

В стационарном состоянии энтропия достигает макси­мального значения Smax.

Методы термодинамики открытых систем [110] при­меняются для описания систем, обменивающихся веще­ством со средой и близких к термодинамическому равно­весию. Изменение энтропии в открытой системе включает две компоненты

где DSi, DSl — прирост энтропии за счет процессов внут­ри системы и приток энтропии извне соответственно. В за­висимости от соотношения DSi и DSl, величина DS может быть положительной и отрицательной. В стационарном состоянии DS = 0.

Рис. 2. Компартментальные системы: а— замкнутая; б— открытая.

Если рассматриваемая открытая система близка к тер­модинамическому равновесию, то поведение энтропии определяется теоремой Пригожина, согласно которой в стационарном состоянии прирост энтропии, обусловленный проте­канием необратимых процессов внутри системы, имеет минималь­ное из возможных и положитель­ное значение. По этой теореме в уравнении (1.5) в стационарном состоянии величина DSi прини­мает минимальное, но положи­тельное значение.

Для практических задач ме­тоды термодинамики открытых систем применяются не часто, бо­лее распространены методы ком-партментального анализа. Остановимся на одном простом примере, позволяющем понять связь, существующую между этими двумя подходами.

Рассмотрим сначала замкнутую систему — ящик с двумя отделениями и отверстием в перегородке (рис. 2, а). Такая модель используется иногда для разъяснения ста­тистического характера энтропии в замкнутой системе. Обобщим ее на случай открытой системы.

Определим состояние системы как (от, п—т), где п — общее число частиц в ящике, т — число частиц в первом (левом) отсеке.

Энтропия состояния системы

где W — число комбинаций, отвечающих данному состоя­нию; k — константа Больцмана. Число комбинаций, отвечающее состоянию (т, п — т) (табл. 2):

В замкнутой системе реализуется стационарное рав­новесное состояние (1.3) с максимальной энтропией S = 2,99kl(табл. 2).

Дополним теперь систему двумя внешними потоками частиц: в первый отсек ящика извне поступает поток с за­данным темпом — две частицы в единицу времени; из второго отсека — частицы с таким же темпом уходят в окружающую среду. Обозначим потоки символом у с двойным индексом: среде присвоим индекс 0. Тогда y01= 2, y20 = —2.

Пусть исходное состояние системы есть (4,2) (рис. 2, б), а движение частиц между отсеками происходит по закону диффузии

y12 = а [т — (п — m)] = а (2т — п); (1.8) для простоты примем а = 0,5. Рассмотрим теперь дис­кретную последовательность событий в системе. После притока двух частиц извне в первый отсек со­стояние системы будет (6,2). Затем согласно (1.8) из пер

Таблица 2 Динамика состояний системы

вого отсека во второй перейдут две частицы — система окажется в состоянии (4,4), а после оттока двух частиц из второго отсека в среду — в состоянии (4,2). Переходы (4,2) в (6,2) и (4,4) в (4,2) вызваны обменом со средой, переход (6,2) в (4,4) — внутренними необратимыми про­цессами в системе. Вычислим приращение энтропии DSi и DSl (1.5).

Приток энтропии извне составляется двумя компонен­тами: DSl1 + DSl2, отвечающими переходом системы (4,2) в (6.2) и (4,4) в (4,2). Тогда:

Следовательно, за цикл DS = DSi + DSl = 0 и си­стема находится в стационарном режиме. Начальное и конечное состояния системы совпадают.

Стационарное состояние (4,2) является неравновес­ным, оно поддерживается за счет непрерывного протека­ния через систему потока частиц. Энтропия стационар­ного неравновесного состояния (4,2), равная 2,7 lk, меньше максимального значения 2,99k, отвечающего ста­ционарному равновесию (3,3).

Кроме этих общих биологических характеристик, це­лесообразно рассмотреть качественные состояния, в ко­торых может находиться биологическая система.

Норма и патология. Известно, что организм может на­ходиться в двух состояниях — нормы и патологии. Эти состояния присущи биосистемам любого иерархического уровня. Состояние нормы является естественным с точки зрения жизнедеятельности. Оно относительно устойчи­во и вместе с тем динамично. По отношению к человеку норма выражается в здоровье, и по уставу Всемирной организации здравоохранения определяется как состоя­ние полного физического, душевного и социального благо­получия, а не только как отсутствие болезней или физи­ческих дефектов. Состояние здоровья предусматривает нормальное функционирование биосистем всех иерархи­ческих уровней организма. В то же время патология лю­бого уровня в силу взаимосвязи и интегрирования всех иерархических систем приводит к патологии всего орга­низма. Таким образом: 1) состояние нормы систем всех уровней является необходимым и достаточным условием здоровья всего организма; 2) состояние нормы систем од­ного из уровней является необходимым, но недостаточным условием здоровья всего организма; 3) состояние патоло­гии систем одного из уровней является необходимым и достаточным условием патологии всего организма. Поопределению И. П. Павлова, патологическое состояние — «это встреча, соприкосновение организма с каким-либо чрезвычайным условием, вернее, с необычным размером ежедневных условий» [101].

Жизнь организма возможна благодаря широкому спектру эволюционно приспособительных реакций, воз­никающих в ответ на действие факторов внешней среды. Воздействия окружающей среды на организм, которые могут привести к патологии, условно можно разделить на косвенные и прямые. В результате косвенных влияний среды могут произойти нарушения нормального функци­онирования какой-либо системы организма, влекущие за собой снижение резистентности. На этом фоне может развиться патология любой этиологии, в том числе не­специфичная для данного фактора среды (например, за­болевания, вызванные условно патогенными микроор­ганизмами в результате переохлаждения). К прямым воздействиям среды на организм, приводящим к соответ­ствующей патологии, можно отнести вещественные (хи­мические вещества, микроорганизмы), энергетические (радиация, температура), механические, информацион­ные (стрессовые ситуации, иатрогения, самовнушение). Степень отклонения от нормы, вызванная внешними фак­торами, зависит от силы и кратности воздействия и от адаптационных возможностей организма. Оно может про­являться как в нарушении функции систем любого уров­ня иерархии, так и в нарушении структуры составляющих их элементов. Чисто функциональные нарушения явля­ются более динамичными и по природе обратимыми. Кум-муляция обратимых функциональных нарушений, свя­занная с их продолжительностью и частотой, может при­вести и к структурным изменениям, которые более статичны и по природе менее обратимы.



2019-12-29 348 Обсуждений (0)
Биокибернетическое определение эволюции 0.00 из 5.00 0 оценок









Обсуждение в статье: Биокибернетическое определение эволюции

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (348)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)