Мегаобучалка Главная | О нас | Обратная связь


ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ БИОЛОГИЧЕСКИХ СИСТЕМ                    



2019-12-29 581 Обсуждений (0)
ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ БИОЛОГИЧЕСКИХ СИСТЕМ                     0.00 из 5.00 0 оценок




Структурно-функциональные принципы. Эксперимен­тальные исследования биологических систем обычно со­провождаются теоретическими обобщениями. При этом применение математических методов анализа способству­ет более строгому формулированию общих положений.

Ранний период внедрения математических методов в биологию относится ко второй половине прошлого века, когда начала разрабатываться вариационная статисти­ка, которую «...Пирсон и его продолжатели специально развивали и расширяли, чтобы сделать ее алгоритмы как можно более пригодными к оценкам, сравнениям и коли­чественным характеристикам биологических явлений»

[36].

В начале XX в. П. П. Лазарев, В. Нернст иДж.Леб,

исследуя раздражения нервной ткани, установили коли­чественные закономерности и вывели формулы, связы­вающие величину возбуждения с силой электрического раздражения. Несколько ранее, в 1901 г., Ж. Вейс пред дожил использовать для этой цели формулу гиперболы. Таким образом, в области нейрофизиологии давно ощу­щалось влияние математизации, что сказалось как на проведении самих экспериментов, так и на формулирова­нии результатов. Если результаты и не облекались в строгую математическую форму, то формулировались они достаточно логично.

Процесс обобщения результатов и формулирования общих положений, связанных с функционированием био­систем, усилился с развитием кибернетики и внедрением в биологические исследования методов моделирования. Общие принципы, выдвинутые кибернетиками при изу­чении работы технических систем, оказались вполне применимыми к биологическим.

Рассмотрим группу принципов, связанных со структу­рой и функцией биосистем, между которыми существует тесное единство. В каждый момент времени функция формируется на структуре, однако необходимость выпол­нять определенную функцию в течение некоторого вре­мени неизбежно приводит к формированию новой струк­туры.

Одним из общих принципов, связывающих структуру и функцию системы, является принцип наипростейшей конструкции, сформулированный в 1943 г. американским биофизиком Н. Рашевским. Одни и те же функции при одинаковой их интенсивности, вообще говоря, могут вы­полняться несколькими различными структурами. Со­гласно принципу Рашевского [114] «...та конкретная структура или конструкция, которую мы действительно находим в природе, является простейшей из возможных структур или конструкций, способных выполнять данную функцию или группу функций». В 1954 г. американский ученый Д. Кон усилил формулировку этого принципа и предложил принцип оптимальной конструкции, по которому органическая структура, необходимая для выполнения данной функции, должна быть оптимальной в отношении нужного количества материала и необходи­мых затрат энергии. Дальнейшее изучение структур­ных особенностей биосистемы привело Н. Рашевского в 1961 г. к принципу адекватной конструкции организма [114]: «Конструкция должна быть адекватной заданной функции при заданных изменяющихся условиях среды».

Сформулированные выше принципы допускают, оче­видно, не единственное решение проблемы формы и струк­ туры. Но это является не недостатком, а преимуще­ством. В органическом мире действительно существуют организмы и органы, которые выполняют в основном оди­наковые функции, но тем не менее различны по форме. Однако нельзя утверждать, что системы, выполняющие разные функции, всегда различны по своей структуре.

Дополнением к теории адекватной конструкции Ра­шевского является принцип эволюционной компенсации силы тяжести [28]. Применительно к рецепторному ап­парату вестибулярного анализатора он формулируется следующим образом: в условиях нормальной весомости сила тяжести компенсируется внутренними упругими си­лами конструкции рецепторов. В периферической части вестибулярного анализатора в процессе эволюции этот принцип используется для увеличения чувствитель­ности рецепторных окончаний специфических нервных клеток.

Обобщением взаимоотношений структуры и функции является принцип структурно-функционального един­ства. В любой биологической системе структура и функ­ция представляют единое целое, причем функциональный эффект биосистемы достигается за счет ее внутреннего структурирования. Единство структуры и функции био­системы формируется в процессе взаимодействия со сре­дой и является проявлением адекватности биосистемы среде. В самой биосистеме структура и функция взаимоадекватны.

Принцип структурно-функционального единства при­менительно к нервной клетке был сформулирован в 1973 г. [75]: пространственно-временная функциональная не­однородность нервной клетки обеспечивается взаимо­действием пространственно распределенных структурно неоднородных синаптических образований со структурно однородной мембраной клетки.

Этот принцип справедлив для биосистем любого иерар­хического уровня. Чтобы его установить, необходимо детально изучить структурирование биосистемы на под­системы и проанализировать формирование функции каж­дой подсистемы и биосистемы в целом на основе взаимо­действия между подсистемами.

Свойство иерархичности биосистем позволило сфор­мулировать принцип этажности [61. В любой сложной системе этажи переработки информации взаимосвязаны и оказывают влияние один на другой. На определенном этапе эволюции биосистем начали возникать этажные структуры. Живые системы усложня­лись сначала за счет длины цепей элементов, затем их соединения становились параллельными, далее происхо­дила надстройка этажей.

Для клетки этажи — это атомы (если отбросить эле­ментарные частицы), простые и сложные молекулы, струк­туры из молекул и, наконец, целые клетки. На каждом этаже происходит обмен энергией и вещественными час­тицами. В процессе развития каждой регулирующей си­стемы организма также формируется сложная структу­ра иерархических этажей с вертикальными связями. Од­новременно закладываются горизонтальные связи между соответственными этажами близких регулирующих си­стем. Для организма прибавляются новые этажи — ткани, органы, системы органов, целостный орга­низм.

Затем формируются иерархические уровни систем, объединяющие несколько первичных систем. На каждом уровне сначала образуются параллельные, затем этаж­ные структуры. Таким образом, сложные отношения, в которых находятся между собой биологические систе­мы организма, носят иерархический характер. Степень независимости одной системы от другой, более крупной, определяется ее жизнеспособностью при отключении от нее энергетических и информационных воздействий со стороны других подобных систем. С понятием сложных отношений связана степень упорядоченности системы или степень непротиворечивости деятельности ее подсистем и элементов, т. е. то, насколько частные функции не ме­шают и не противодействуют друг другу.

Повышение степени упорядоченности увеличивает устойчивость системы, но понижает способность ее к эво­люции.

Принципы динамического функционирования био­систем. Одна из первых попыток формирования принципа работы биосистемы принадлежит П. Мопертюи (XVIII в.). Его принцип наименьшего действия гласит: когда в при­роде происходит некоторое изменение, количество дей­ствия, необходимое для этого изменения, является наи­меньшим возможным. По иронии судьбы принцип Мопертюи, высказанный по отношению к живой природе, к биосистемам, получил строгую трактовку уже безот­носительно к биологии, и теперь широко известны егоприложения к теории синтеза технических систем авто­матического управления.

Начало анализа сохранительных свойств биосистем связывается с обобщением принципа самосохранения Ле-Шателье: если на систему, находящуюся в устойчи­вом равновесии, подействовать извне, изменяя какое-нибудь из условий, определяющих положение равнове­сия, то равновесие смещается в том направлении, при ко­тором эффект произведенного воздействия уменьшается.

Этот принцип был сформулирован французским хи­миком А. Ле-Шателье в 1887 г. для термодинамических систем. После того как немецкий физик К. Браун пока­зал, что это положение является следствием второго на­чала термодинамики, его иногда стали называть принци­пом Ле-Шателье—Брауна.

Аристотель учил, что каждому элементу отвечает свое естественное место во Вселенной, к которому тела стре­мятся по природе с тем, чтобы тем достигнуть покоя. После Ньютона, однако, стало ясно, что такого естествен­ного места не существует: все тела, если на них действу­ют силы, сохраняют свое состояние, а изменение состоя­ния, каким бы оно ни было, осуществляется внешними силами. Тела же сопротивляются любому насильствен­ному изменению своего состояния.

Б. Спиноза сформулировал свою концепцию самосохранения так: «Никакая вещь не имеет в себе ничего, через' что она могла бы уничтожиться; наоборот, она противо­действует всему тому, что может уничтожить ее сущест­вование. Следовательно, насколько возможно и насколь­ко это от нее зависит, она стремится пребывать в своем существовании» [125].

Принцип Ле-Шателье — Брауна, таким образом, мож­но трактовать как частное применение общего принципа самосохранения к термодинамическим системам.

В сходных терминах было сформулировано У. Кен-ноном и понятие самосохранения живых систем: «В от­крытой системе, такой как наши организмы, состоящие из нестабильного материала и подверженные непрерыв­ному воздействию возмущений, само постоянство служит доказательством существования агентов, действующих или готовых к действию, чтобы поддержать это постоян­ство.

Если состояние остается устойчивым, то это происхо­дит потому, что любая тенденция к его изменению авто магически вызывает увеличение эффективности фактора или факторов, противодействующих этому изменению» [154].

Важность принципов самосохранения для понимания процессов в живых системах очевидна. Эти принципы в различных сферах исследования используются в различ­ных формах. Так, часто принципы сохранения принима­ют гомеостатический характер, в той или иной мере близ­кий принципу Ле-Шателье [33, 154]. В иных случаях связь концепций с принципом Ле-Шателье отрицает­ся [38].

Большое значение для развития представлений об общих принципах работы биосистем имеет сформулиро­ванный И. М. Гельфандом и М. Л. Цетлиным принцип наименьшего взаимодействия. Согласно этому принципу, систему можно назвать целесообразно работающей в не­которой внешней среде, если система стремится миними­зировать взаимодействие со средой [142]. При этом мерой взаимодействия организма со средой может служить от­клонение параметров внутренней среды организма от оптимальных значений. Этот принцип был ими выдвинут при изучении механизмов управления движениями и взаимодействием иерархических уровней нервной систе­мы. Суть его состоит в том, что если рассматривать слож­ную систему управления как совокупность подсистем, составляющих несколько уровней, то каждая такая под­система стремится уменьшить свое взаимодействие с внеш­ней средой. На каждом уровне внешние воздействия включают идущую с нижних уровней афферентацию, а взаимодействие высших уровней определяет организацию взаимодействия низших уровней. Модель, соответствую­щая этому принципу, определяет достижение цели в ме­няющейся среде с помощью методов поиска экстремума нестационарной функции многих переменных.

В развитие теоретической биологии большой вклад внес советский биофизик Э. Бауэр, изучивший химиче­ские и физические процессы, протекающие в организме на клеточном уровне. Свои выводы он изложил в виде очень оригинальных принципов, облеченных в строгую математическую форму, в книге «Теоретическая биоло­гия» (1935 г.). Э. Бауэр подчеркивал, что на уровне за­конов химии и физики в организме не наблюдается рав­новесия, напротив, организму присуще устойчивое не­равновесие. Рассматривая процессы обмена между биосистемой и средой по веществу и энергии, Э. Бауэр [32] формулиру­ет некоторые принципы, общие для живых систем:

всем живым существам свойственно прежде всего са­мопроизвольное изменение своего состояния, т. е. изме­нение состояния, которое не вызвано внешними причина­ми, лежащими вне живого организма;

при изменении внешних условий существо не просто противодействует внешней силе (инерции и трению по принципу Даламбера), а в результате противодействия изменяет состояние среды;

работа живых систем при всякой окружающей среде направлена против равновесия, которое должно было бы наступить в данной окружающей среде при данном пер­воначальном состоянии системы.

Обобщением этих трех принципов является сформули­рованный Э. Бауэром всеобщий закон биологии: все и только живые системы никогда не бывают в равновесии и исполняют за счет своей свободной энергии постоянно работу против равновесия, требуемого законами физики и химии при существующих внешних условиях. Этому закону он придал следующую математическую трак­товку:

где F — свободная энергия системы при наступившем равновесии; х— разность факторов работы (разность потенциалов, концентраций); Dх— изменения, выз­ванные этими факторами; Dl — время, в течение которого произошли эти изменения. Здесь штрих относится к не­живой системе, а разность в правой части соответствует работе живой системы против выравнивания.

Практически всему человечеству известны работы И. П. Павлова по условным рефлексам. Здесь мы лишь обсудим соотношение взглядов И. П. Павлова с понятия­ми кибернетики. Практически все работы И. П. Павло­ва и его школы относятся к исследованию тех или иных форм поведения, к исследованию условий, в которых под влиянием изменившейся окружающей среды разруша­ется старый и формируется новый стереотип поведения. Известно также, что в кибернетике принято рассматри­вать систему и ее среду и объяснять изменение поведениясистемы изменением среды. С этой точки зрения исследо­вание формирования простых, а затем и сложных инстру­ментальных рефлексов у животных под действием безус­ловных и условных раздражителей есть исследование кибернетических (живых) систем. И результаты, получен­ные в этом отношении акад. И. П. Павловым, трудно пе­реоценить. Он не использовал математические методы при интерпретации своих экспериментов, но ему удалось сформулировать ряд весьма важных принципов, которые до сих пор не утратили своего значения.

При исследовании взаимодействия организма со сре­дой И. П. Павлов обосновал логическую структурную мо­дель условных рефлексов. В эксперименте он создал специальные комбинации входных воздействий на ор­ганизм, четко регистрировал реакцию организма не толь­ко по общему поведению, но и по качественным значени­ям физиологических показателей.

Результатом такого структурного подхода явилось формулирование И. П. Павловым в конце 20-х и в нача­ле 30-х годов принципа уравновешивания системы со средой, который обобщал три важных положения [104]:

мозг регулирует процессы, протекающие внутри ор­ганизма,— принцип нервизма;

мозг устанавливает и регулирует взаимосвязь между организмом и внешней средой на базе безусловных и условных рефлексов — принцип условных и безусловных рефлексов;

кора головного мозга осуществляет функцию образо­вания и сохранения динамического равновесия между внутренней средой организма и окружающей организм средой — принцип динамического уравновешивания внешней и внутренней среды.

Если обратиться к истокам кибернетики, нельзя не отдать должное исследованиям И. П. Павлова. И прин­цип нервизма, и принцип безусловных и условных реф­лексов, и принцип уравновешивания внешней и внутрен­ней среды привели к выводу о том, что биологическая система, активно перестраивая свое поведение, стремит­ся к уравновешиванию со средой. Это дает ключ к пони­манию не только динамического приспособления к изме­нившимся условиям среды в онтогенезе, при обучении, но и в эволюции видов, к филогенезу.

Акад. И. П. Павлов является также основателем шко­лы, использующей метод логического структурирования биологической модели при исследовании биосистем раз­личного иерархического уровня.

Принцип функциональной системы. В 30-е годы идеи, связанные с принципом и теорией функциональной системы, развивал акад. П. К. Анохин. Он придал законченный вид идее рефлекторной дуги И. П. Павлова, характерный для систем с обратной связью. Им был вы­двинут и разработан тезис об обратной афферентации— своеобразном замыкании обратной связи организма через окружающую среду — и подчеркнут сложный характер обработки информации в цепи обратной афферентации. Фундаментальным является и положение П. К. Анохина о роли результата как фактора, образующего функцио­нальную систему. Как он справедливо отмечает, все опре­деления систем, бытующие даже сейчас в кибернетике и общей теории связи, являются неполными вследствие отсутствия связи работы системы с требуемым конечным результатом. Если И. П. Павлов, выдвинув принцип динамического уравновешивания организма со средой, указал на конечную естественную цель, достигаемую ор­ганизмом, обитающим в данной среде и приспосаблива­ющимся к ней, то теория функциональной системы П. К. Анохина раскрывает, как организм может достиг­нуть этой конечной цели, какие механизмы должны для этого действовать. Любопытно отметить, что идеи П. К. Анохина, связанные с анализом биосистем, т. е. наиболее сложных систем, опережают идеи, возникающие в кибернетике на основе анализа и усложнения техни­ческих систем, в частности необходимость замыкания об­ратной связи обоснована им еще в 1935 г. Обратная аф-ферентация являет собой пример наиболее сложной обработки информации, для которой в технических си­стемах нынче используются вычислительные машины;

выдвинутое им положение об акцепторе действия пред­восхитило идеи оптимального и критериального управле­ния.

Рассмотрим основные положения общей теории функ­циональных систем организма. Различные этапы форми­рования системы фактически подчинены решению сле­дующих вопросов: какой результат должен быть полу­чен; когда именно должен быть получен результат;

какими механизмами должен быть получен результат;

как система убеждается в достаточности полученного ре­зультата. П. К. Анохин придает результату возможность орга­низовать распределение возбуждений в системе в соот­ветствующем направлении. Таким образом, все форми­рование системы подчинено получению определенного полезного результата; недостаточный результат может целиком реорганизовать систему и сформировать новую, с более совершенным взаимодействием компонентов, даю­щим достаточный результат.

П. К. Анохин дает следующее определение понятия системы. [17]: «...системой можно назвать только такой комплекс избирательно вовлеченных компонентов, у ко­торых взаимодействие и взаимоотношение приобретают характер взаимосодействия компонентов на получение фиксированного полезного результата».

В свою очередь результат благодаря обратной аф-ферентации имеет возможность реорганизовать систему, создавая такую форму взаимодействия между ее ком­понентами, которая является наиболее благоприятной для получения именно запрограммированного результа­та. Таким образом, результат рассматривается как не­отъемлемый и решающий компонент системы, как ин­струмент, создающий упорядоченное взаимодействие меж­ду всеми другими ее компонентами.

Функциональные системы организма складываются из динамически мобилизуемых структур в масштабе целого организма. Наличие результата системы как опре­деляющего фактора для формирования функциональной системы и наличие специфического строения структурных аппаратов, дающих возможность немедленной мобили­зации объединения их в функциональную систему, го­ворит о том, что системы организма всегда функциональ­ны. Это значит, что функциональный принцип выборочной мобилизации структур является доминирующим. Поэто­му такая система и была названа функциональной [15].

С вопросом структурного состава функциональной системы связан и вопрос об иерархии систем. Говоря о составе функциональной системы, следует иметь в виду, что всякая данная функциональная система, взятая для исследования, неизбежно находится где-то между тон­чайшими молекулярными системами и наиболее высоким уровнем системной организации.

П. К. Анохин делает следующий вывод о составе ие­рархии: все функциональные системы, независимо от уровня своей организации и от количества составляющихих компонентов, имеют принципиально одну и ту же функциональную архитектонику, в которой результат является доминирующим фактором.

Главной чертой каждой функциональной системы яв­ляется ее динамичность. Структурные образования, со­ставляющие функциональные системы, обладают исклю­чительно подвижной мобилизуемостью. Именно это свойство систем и дает им возможность быть пластичными, внезапно менять свою архитектонику в поисках запро­граммированного полезного результата.

Применение системы как инструмента в научных ис­следованиях затруднено настолько, что многие исследо­ватели не изучают внутреннее строение системы, а ограни­чиваются исследованием на уровне «черного ящика». Между тем вскрытие внутренних закономерностей дей­ствия системы, ее узловых механизмов позволило бы добиться главного в исследовательском процессе: удер­жания в руках целого, когда анализируются части этого целого [1б].

Функциональная система всегда гетерогенна. Она состоит из определенного количества узловых механиз­мов, каждый из которых занимает надлежащее место и является специфическим для всего процесса формирова­ния функциональной системы. Вскрытие этих механиз­мов, составляющих внутреннюю архитектонику системы, приблизит исследователей к самой решающей цели системного подхода вообще — обеспечить органическое единство в исследовательском процессе системного уров­ня функционирования с индивидуальной характеристи­кой каждого дробного элемента или механизма, прини­мающего участие в этом функционировании.

Одним из достоинств общей теории функциональных систем является разработка модели системы с четко от­работанным внутренним строением или, по выражению П. К. Анохина, внутренней архитектоникой. Такая внутренняя архитектоника, выраженная в физиологи­ческих понятиях, является непосредственным инстру­ментом для практического применения функциональной системы в исследовательской работе.

Рассмотрим узловые специфические механизмы, пред­ставляющие собой внутреннюю архитектонику системы (рис. 5).

Афферентный синтез. Биосистема, даже простой иерархии, сама на основе внутренних процессов прини мает решение о том, какой результат нужен в данный момент ее приспособительной деятельности. Вопрос этот решается именно на стадии афферентного синтеза.

Выдвигаются четыре решающих компонента афферент­ного синтеза, которые должны быть подвергнуты одно­временной обработке с одновременным взаимодействием на уровне отдельных нейронов: доминирующая на данный момент мотивация; обстановочная афферентация, также соответствующая данному моменту; пусковая афферента­ция и, наконец, память

Основным условием афферентного синтеза является

Рис. 5. Общая характеристика функциональной системы (по П. К. Анохину).

одновременная встреча всех четырех составляющих этой стадии функциональной системы. Микроэлектрод­ный анализ, микрохимическое исследование и другие формы аналитического исследования нейрона в момент встречи на нем упомянутых выше четырех возбуждений показали, что этот процесс поддерживается и облегчается рядом динамических процессов нервной системы. Это преж­де всего выходящая активация, сопутствующая афферент­ному синтезу и предшествующая принятию решения [88, 141]. Сюда же относятся процесс корково-подкорковой реверберации [147] и процесс центробежного повышения возбудимости вовлеченных в афферентный синтез ре­цепторов.

Афферентный синтез, приводящий организм к реше­нию вопроса, какой именно результат должен быть полу­чен в данный момент, обеспечивает постановку цели, достижению которой и будет посвящена вся дальнейшая логика системы. Принятие решения является следующим узловым ме­ханизмом функциональной системы. Афферентный син­тез, подчиняясь доминирующей на данный момент мо­тивации, осуществляет подбор тех значений элементов системы, при которых возбуждения избирательно направ­ляются к мышцам, совершающим нужное действие. Любое принятие решения после окончания афферентно­го синтеза является выбором наиболее подходящих зна­чений элементов, которые должны составить рабочую часть системы. Эти значения дают возможность экономно осуществить именно то действие, которое должно привес­ти к запрограммированному результату.

Принятие решения — это в высшей степени конденси­рованный процесс, в котором одновременно обрабатыва­ется на основе доминирующей мотивации вся пришедшая в мозг афферентная информация, производится непрерыв­ное сопоставление этих результатов с прошлым ответом и переводятся результаты этой обработки на афферентные пути, соответствующие распределению возбуждений для совершения нужного акта, обеспечивающего получение необходимых результатов.

Формирование акцептора результатов действия. Ак­цептор результатов действия является весьма сложным аппаратом. По сути он должен сформировать определен­ные нервные механизмы, которые позволяют не только прогнозировать признаки необходимого в данный момент" результата, но и сличать их с параметрами реального ре­зультата, информация о которых приходит к акцептору результатов действия благодаря обратной афферента-ции. Именно этот аппарат дает единственную возмож­ность организму исправить ошибку поведения или довес­ти несовершенные поведенческие акты до совершенных.

П. К. Анохиным с сотрудниками был доказан в ряде экспериментов — ив обычных с условными рефлекса­ми, и с помощью тонких электрофизиологических при­емов — тот факт, что аппарат акцептора результатов действия организуется непосредственно после принятия решения.

Очевидно, что существенные признаки будущего ре­зультата динамически формируются благодаря много­сторонним процессам афферентного синтеза с извлечени­ем из памяти прошлого жизненного опыта и его результата. Этот комплекс возбуждений является афферентной моделью будущего результата, а именно эта модель, яв ляясь эталоном оценки обратных афферентаций, должна направлять активность человека и животных вплоть до получения запрограммированного результата.

В последнее время были получены сведения о том,что в этот нервный комплекс, обладающий высокой степенью мультиконвергентного взаимодействия, приходит еще одно возбуждение, уже эфферентной природы. Речь идет о коллатералях пирамидного тракта, которые по многим межуточным нейронам отводят «копии» тех эфферент­ных посылок, которые выходят на пирамидный тракт. Эти эфферентные возбуждения конвергируют на те же ме­жуточные нейроны сенсомоторной области, куда посту­пают и все те афферентные возбуждения, которые могут составить параметры реального результата.

Таким образом, момент принятия решения и начала выхода рабочих эфферентных возбуждений из мозга со­провождается формированием обширного комплекса воз­буждений, состоящего из афферентных признаков буду­щего результата и из коллатеральной копии эфферентных возбуждений, вышедших на периферию по пирамидному тракту к рабочим аппаратам. В зависимости от интерва­ла между постановкой цели и ее реализацией к этому же комплексу возбуждений через определенное время при­ходят возбуждения и от реальных параметров получен­ного результата. Сам процесс оценки полученного реаль­ного результата осуществляется из сличения прогнози­рованных параметров и параметров реально полученного результата. Именно здесь осуществляется оценка по­лученного результата. Оценка и результат оценки опре­деляют дальнейшее поведение организма. Если результат соответствует прогнозу, то организм переходит к следу­ющему этапу поведения. Если же результат не соответ­ствует прогнозу, то в аппарате сличения происходит рас­согласование, активирующее ориентировочно-исследо­вательскую реакцию, которая, поднимая ассоциативные возможности мозга на более высокий уровень, тем самым помогает активному подбору дополнительной информа­ции.

Принцип функциональной системы, являющийся до­статочно общим, оказался полезным при изучении био­систем различного иерархического уровня, а детальное структурирование позволяет проводить эксперименты по выявлению взаимодействия между отдельными блоками системы. Принципы самоорганизации и адекватности. Большое внимание исследователей привлекает такое фундамен­тальное свойство биосистем, как способность изменять свою сложность и организацию. Это качество биосистемы изучалось в самых различных аспектах. У. Р. Эшби обратил внимание на необходимость установления соот­ветствия между сложностью биосистемы и сложностью среды. В 1958 г. он сформулировал принцип необходимого разнообразия: только разнообразие может уничтожить разнообразие. Этот принцип означает, что биологиче­ская система может функционировать в среде, если число состояний системы равно числу состояний среды.

Рис. 6. Схема взаимодейст­вия по сложности.

 

Развитие принципа необходимого разнообразия [25] предусматривает не для всех случаев взаимодействия системы и среды установление равновесия по числу со­стояний. Используя меру сложности, введенную У. Р. Эшби, можно записать функции числа состояний для биосистемы и среды:

Н s m = log ns; Hem == log ne

(1.16)

где индекс s относится к систе­ме, индекс е — к среде.

Рассогласование между био­системой и средой по сложности в этом случае определяется следующим образом:

где kн — коэффициент пропорциональности.

Это рассогласование является управляющим сигна­лом, который действует на механизм изменения сложнос­ти Wн за счет постоянного притока вещества В и энергии Е (рис. 6).

Таким образом, биосистема, используя устойчивое неравновесие, способна изменить свою структуру и функциональную сложность (число состояний). Слож­ность биосистемы изменяется за счет изменения размеров, числа элементов, числа связей между элементами или путем изменения параметров элементов, динамической конфигурации связей между ними. Изменение функци­ональной сложности может быть связано с использова­нием ранее не задействованных структурных элементов, с изменением порядка и разнообразия реакций биосистемы Измерение числа состояний среды может во многих случаях непосредственно производиться биосистемой. При этом возможны три случая взаимодействия системы со средой в зависимости от величины kн:

1) kн = 1 — каждому состоянию среды соответствует состояние биосистемы — прямое использование принципа необходимого разнообразия Эшби;

2) kн < 1 — каждому состоянию среды может со­ответствовать некоторое множество состояний биосисте­мы; такой случай возможен, если биосистема обладает возможностью тонкого и структурного анализа состоя­ний среды;

3) kн > 1 — определенному набору числа состояний среды соответствует некоторый меньший набор числа со­стояний биосистемы; этот случай может соответствовать процессу укрупнения показателей среды по тем или иным критериям, процессу обобщения в образ.

При анализе разнообразия системы и среды нельзя исключить ни один из рассмотренных выше случаев. Более того, найденное тем или иным способом экспери­ментальное значение kн может указать на характер вза­имодействия биосистемы со средой (анализ, синтез, взаимно-однозначное соответствие). Например, если вза­имодействие биосистемы со средой проходит в условиях дефицита вещества и энергии, то в биосистеме может про­исходить вынужденное обобщение числа состояний сре­ды. Динамика установления необходимого разнообразия в биосистеме может быть различной. Если необходимое разнообразие может быть достигнуто за счет мобилизации структурных и (или) функциональных резервов, то ус­тановление может осуществиться достаточно быстро. Если же для необходимого разнообразия биосистема должна заниматься перестройкой собственной структу­ры, то этот процесс может быть достаточно длительным. В соответствии с этим основанием для перестройки структуры является частое и длительное воздействие среды на биосистему.

Рассматривая возможности биосистемы по изменению уровня организации, У. Р. Эшби [150] отметил, что само­организация как процесс может означать переход от неорганизованной системы к организованной или пере­ход от плохо организованной системы к хорошо орга­низованной. Он предложил считать критерием само­организации биосистем убывание неопределенности, выражаемое условием

В 1960 г. Г. Ферстер ввел в рассмотрение оценку от­носительной организации и предложил считать систему самоорганизующейся, если

Усложнение простых условий взаимосвязи биосистемы и среды и учет влияния среды на сложность системы при­водят к необходимости рассмотрения текущей неопреде­ленности системы как функции распределения вероят­ностей состояний. В этом случае условия самоорганиза­ции принимают вид [19]:

Рассмотренные выше условия изменения энтропии (не­определенности) биосистемы обладают общей следующей особенностью: влияние среды оценивается лишь по изме­нению неопределенности или уровня организации био­системы.

Более четко принцип самоорганизации был сформули­рован в 1962 г. В. М. Глушковым. При этом рассматрива­лось взаимодействие системы (в том числе и биосистемы)" со средой и изменение неопределенности системы как функция этого взаимодействия. Пусть Q представляют собой сигналы среды, воспринимаемые биосистемой как обучающая последовательность. Среди всех обу­чающих последовательностей есть последовательность Q0, при которой энтропия биосистемы максимальна. Вообще говоря, обучающую последовательность Q0 можно считать тем первоначальным контактом, который биосистема установила с данной средой. Понятно, что если биосис­тема способна обучаться, то каждый последующий кон­такт со средой может уменьшать неопределенность си­стемы. Тогда изменение неопределенности

D HQ=HQ-HQ0         (1.21)

является величиной отрицательной.

Часть обучающих последовательностей среды может использоваться или считаться экзаменационными. Пусть биосистема многократно (k раз) может подвергатьсявыражаемое условием

В 1960 г. Г. Ферстер ввел в рассмотрение оценку от­носительной организации и предложил считать систему самоорганизующейся, если

Усложнение простых условий взаимосвязи биосистемы и среды и учет влияния среды на сложность системы при­водят к необходимости рассмотрения текущей неопреде­ленности системы как функции распределения вероят­ностей состояний. В этом случае условия самоорганиза­ции принимают вид [19]:

Рассмотренные выше условия изменения энтропии (не­определенности) биосистемы обладают общей следующей особенностью: влияние среды оценивается лишь по изме­нению неопределенности или уровня организации био­системы.

Более <



2019-12-29 581 Обсуждений (0)
ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ БИОЛОГИЧЕСКИХ СИСТЕМ                     0.00 из 5.00 0 оценок









Обсуждение в статье: ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ БИОЛОГИЧЕСКИХ СИСТЕМ                    

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (581)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)