Мегаобучалка Главная | О нас | Обратная связь


СВОЙСТВА БИОЛОГИЧЕСКИХ СИСТЕМ



2019-12-29 454 Обсуждений (0)
СВОЙСТВА БИОЛОГИЧЕСКИХ СИСТЕМ 0.00 из 5.00 0 оценок




Биологические системы обладают таким обширным на­бором свойств, диалектически противоположных друг другу, которых нет у технических и экономических си­стем. Это устойчивость и управляемость, жесткость и гибкость, детерминированность и стохастичность и дру­гие. В зависимости от обстоятельств у биосистем на пер­вый план выдвигаются те свойства, которые необходимыдля сохранения вида и индивида, например обучаемость, изменение поведенческих реакций, приспособление к из­менившимся условиям жизни, изменение наследственных качеств. Здесь все подчинено основной цели — выжива­нию на уровне организма и воспроизведению на уровне вида.

Одна часть свойств относится к структуре и функции биосистем; другая подчеркивает те качества, которые не­обходимы для сохранения вида и индивида; третья ха­рактеризует тактику и стратегию организма при достиже­нии основных целей.

Сложность и организация. Одним из главных свойств биосистемы является структурная и функциональная сложность. Проявления сложности многообразны и свя­заны с количеством возможных состояний. Состояния био­системы включают состояния элементов и сочетания свя­зей между ними.

У- Р. Эшби [150] предложил в качестве меры слож­ности использовать разнообразие, или число состояний системы п. Для оценки сложности системы удобно поль­зоваться также логарифмической мерой

Hmax = log n ,                (1.9)

где Нтах — мера сложности, или максимальная неопре­деленность системы.

Функциональные особенности биосистемы проявляются на ее выходе. Поэтому степень функциональной слож­ности зависит от характера ее выходных элементов. Если выход биосистемы является дискретной величиной (число выходных значений можно точно пересчитать), то число состояний определяется точно (например, частота нейронов). При этом сложность равна логарифму максимального значения дискретного выхода.

Для биосистем, показатель работы которых изменяет­ся непрерывно (например, насыщение крови кислородом, уровень сахара в крови), для получения числа состояний необходимо знать граничные значения изучаемого пока­зателя и точность методики его измерения. Таким обра­зом, для биосистем, непрерывно изменяющих свой уро­вень, число состояний определяется исследователем и является условным.

Оценка сложности по числу состояний системы не по­казывает, в каком из возможных состояний система на­ходится и в какое она перейдет в следующий момент вре мени. Пусть, находясь в одном из структурных состояний, система принимает любое из п функциональных состоя­ний. Если достаточно долго наблюдать систему, то по час­тоте появления функциональных состояний можно при­ближенно судить о вероятностях ее пребывания в этих состояниях. Обозначим их через pi. Для общей оценки си­стемы по вероятностям К. Шеннон ввел эвристическое по­нятие неопределенности, или энтропии [145]. Пусть из­мерены относительные частоты (при большом числе на­блюдений стремящиеся к вероятностям) для всех функ­циональных состояний системы. Все функциональные состояния образуют полную систему событий. При этом выполняется соотношение

Под неопределенностью (энтропией) дискретных ве­личин понимают следующую величину:

Если, например, система все чаще находится в 1-м состоянии, то вероятность pi стремится к единице. В пре­дельном случае, когда pi=1 , энтропия равна нулю и система становится детерминированной. Если система безразлична к своим состояниям, то вероятности равны, а неопределенность, вычисленная по формулам типа (1.11), принимает максимальное значение. Таким обра­зом, неопределенность системы находится в пределах 0£H£Hm.           (1.12)

Со сложностью связаны многомерность и многосвяз-ность биосистем, проявляющиеся в наличии большого количества разнородных параметров, в многообразии связей между однородными и разнородными параметра­ми, характеризующими работу данной системы. Если даже выход биосистемы оценивается по одному параметру, то необходимо учитывать, что этот параметр является результирующим взаимосвязанной работы структур­но обособленных подсистем, каждая из которых оцени­вается своим параметром. Внутренняя же структура био­логических систем организма обусловлена их эволюцией.

С внутренней структурой биологических систем обыч­но связывается их организация — специфическая для живых систем структурно-функциональная упорядочен­ ность. Качественно более сложный уровень организации биосистем по сравнению с естественными системами не­органической природы и с искусственными системами, создаваемыми человеком, обусловлен их длительной эволюцией. Формальное определение организации свя­зано с работами К. Шеннона, У. Р. Эшби, В. М. Глушко-ва, Г. Ферстера.

Организация системы выявляется путем подсчета меры неопределенности ее состояний, характеризующей ее хаотичность, неорганизованность. При равных вероят­ностях принятия системой своих состояний она может счи­таться полностью дезорганизованной, так как в любой момент она с равной возможностью может перейти в лю­бое состояние. В этом случае система обладает максималь­ной неопределенностью, которая совпадает с мерой слож­ности системы [1.9]. Можно предположить, что в дезор­ганизованной системе ее состояния не связаны между собой.

Оценка уровня организации системы связана с макси­мальной Hmax (1.9) и текущей H (1.11) неопределенностя­ми системы. Пусть в результате эволюции, фило- или он­тогенеза система, работавшая прежде с максимальной неопределенностью Hmax (т. е. полностью дезорганизо­ванная система), стала предпочитать некоторые из со­стояний и характеризоваться текущей неопределенностью H < Hmax. Тогда организация системы для данного уровня развития определяется реализованной в системе неопределенностью [11,19]:

O=Нmax—Н,          (1.13)

где О—абсолютная организация системы. Значение аб­солютной организации системы ограничено снизу ну­лем, а сверху — величиной, максимально возможной для данной системы неопределенности.

Таким образом, организация детерминированной системы (H=0) также определяется максимальной не­определенностью, т. е. строится на максимально возмож­ном числе состояний. Только в случае детерминирован­ной системы смена состояний является закономерной. Для системы, замкнутой в организационном отношении, равенство (1.13) определяет закон сохранения организа­ции: организация и неопределенность на любом этапе эволюции (жизни, обучения и других) равны максимально возможной неопределенности системы. От соотношения (1.13) легко перейти к формуле под­счета относительной организации системы R, разделив обе части равенства на Hmax [134]:

R=1-H/Hmax.               (1.14)

Очевидно, что мера R характеризует величину отно­сительной организации системы и лежит в пределах 0£R£1. Для детерминированной системы относи­тельная организация равна единице, для полностью дезорганизованной — нулю. Понятие относительной ор­ганизации позволяет сравнивать между собой различ­ные системы. Текущее значение неопределенности связа­но с энтропией живых систем.

Любая биосистема характеризуется структурной и функциональной организацией. Основой, на которой строится структурная организация биосистемы, являют­ся размеры элементов системы, число элементов системы и связей между ними. Например, размеры клеток дан­ного нервного узла являются параметрами структурной организации, а по гистограмме распределения клеток данного узла, по их диаметрам можно подсчитать сте­пень организации с помощью (1.13) и (1.14). Параметра­ми функциональной организации, например отделов нервной системы, могут служить межспайковые интер­валы спонтанной и вызванной активности, по гистограммам межспайковых интервалов можно также рассчитать величину абсолютной (1.13) и относительной (1.14) ор­ганизации.

Обратимся к понятию информации. Это понятие обыч­но предполагает наличие источника и потребителя, объек­та и субъекта. Мерой количества информации служит разность неопределенностей, полученная в результате наблюдения объекта, либо разность неопределенностей, получаемая как результат вычитания неопределенности объекта и неопределенности субъективной гипотезы об объекте. Таким образом, как информация, так и органи­зация могут выражаться одной и той же мерой и в част­ном случае могут иметь одни и те же числовые значения, однако эти значения по-разному интерпретируются. Например, если анализируются материальные объекты без учета взаимодействия между ними, то целесообразно говорить о сложности и организации как свойствах объективных, не зависящих от наблюдателя, исследова­теля, как о качествах самих объектов/

Сохранительные свойства. При анализе биосистем обычно сталкиваются с различными аспектами сохрани-тельных свойств живых систем, частными проявлениями которых являются адаптация, выживание, эквифиналь-ность, стабилизация, гомеостаз. Сохраняются только такие составляющие живой природы, в которых стрем­ление к самосохранению выражено достаточно ярко [85].

Вообще, термин «сохранительные свойства биосистем» используется для обозначения двух различных, хотя и тесно связанных между собой, характеристик живых систем. Прежде всего самосохранение биосистемы оз­начает ее способность поддерживать и сохранять свое стационарное неравновесное состояние вне зависимос­ти от условий внешней среды и при изменяющихся условиях функционирования биосистемы. В этом смысле можно утверждать, что управляющие механиз­мы биосистемы обеспечивают баланс потоков энтропии через систему, а также баланс вещественных потоков — адекватное снабжение системы необходимыми ей веще­ствами и энергией. Не менее важный аспект сохранитель-ных свойств биосистем связан с поддержанием гомео-стаза — относительного постоянства существенных пере­менных внутренней среды биосистем при наличии возмущающих влияний со стороны внешней среды.

Управляющие механизмы биосистем, обеспечива­ющие их сохранительные свойства, характеризуются высокой надежностью. Надежность сохранительных меха­низмов в биосистемах достигается за счет множествен­ности (дублирования) регулирующих связей, которые контролируют одну и ту же функцию относительной ав­тономности параллельно функционирующих элементов, а также за счет дублирования источников энергии и соз­дания запасов нужных веществ.

Одним из важных свойств, позволяющих биосистеме сохранять относительно неизменными параметры ее жиз­недеятельности, является гомеостаз, или гомеостазис. Первоначально термин «гомеостаз» был введен У. Кэн-ноном для описания способности организмов поддер­живать постоянство внутренней среды: «Постоянные ус­ловия, которые поддерживаются в организме, можно было бы назвать равновесием. Это слово, однако, име­ет довольно точное значение для относительно простых физико-химических состояний в замкнутых системах, где уравновешиваются известные силы. Координированные физиологические процессы, которые поддержи­вают большинство установившихся состояний в организ­ме, настолько сложны и специфичны для живых существ, включая, возможно, мозг и нервы, сердце, легкие, почки и печень, работающие совместно, что я предложил спе­циальное обозначение для этих состояний — гомеостазис. Это слово не предполагает чего-то установленного и не­подвижного, застывшего. Оно означает — состояние, которое может меняться, но которое относительно по­стоянно» [154].

Согласно концепции Кэннона, при наличии угрозы со стороны внешней среды в системах организма вклю­чаются агенты, уменьшающие эту опасность. Корректи­рующие механизмы действуют в основном через специ­альную часть нервной системы, функционирующую как регуляторный механизм. Вследствие этой регуляции в организме обеспечивается, во-первых, запас веществ как средство обеспечения соответствия между спросом и предложением, во-вторых, имеются скорости непрерывно протекающих в организме процессов.

Эта концепция была последовательно применена Кэн-ноном для анализа процессов сохранения постоянства содержания воды и солей в крови, поддержания адекват­ного кислородного снабжения, гомеостаза сахара, белков, жиров и кальция крови, гомеостаза нейтральности крови "и постоянства температуры тела.

Позже понятие гомеостаза стало формулироваться в более компактной форме: гомеостазом обычно называют сохранение постоянства внутренней среды организма при наличии возмущений во внешней среде.

Отметим также, что термином «гомеостаз» иногда обо­значают и саму систему, обладающую гомеостатическими свойствами. Такое использование этого термина восходит к работе Эшби [151]. Приведем в заключение определе­ние гомеостаза, данное в стандартном английском меди­цинском словаре: «Гомеостаз (1)—состояние равновесия в живом организме, относящееся к различным функци­ям и химическому составу жидкостей и тканей, напри­мер, к температуре, частоте пульса, давления крови, содержания воды, сахара крови и т. д. (2) — процесс, посредством которого это равновесие поддерживается» [1643.

Идея гомеостаза, предложенная первоначально для физиологических систем, оказалась настолько богатой иплодотворной, что быстро распространилась и на другие биосистемы.

Согласно определению Кэннона, гомеостаз — это свойство целостного организма, целостной биосистемы. Иной точки зрения придерживается Л. фон Берталанфи:

«Следует уяснить, что термин «гомеостаз» может употреб­ляться двояко. Он используется либо в его первоначаль­ном смысле, предложенном Кэнноном и иллюстрируемом примерами поддержания температуры тела и других физиологических переменных с помощью механизмов об­ратной связи, либо в другом смысле, который имеют в ви­ду, а именно как синоним для органической регуляции вообще» [38]. Далее Берталанфи настаивает на использо­вании термина «гомеостаз» как синонима термина «от­рицательная обратная связь».

Ряд авторов придерживается противоположной точки зрения, считая понятие гомеостаза скорее синонимом сохранительных способностей целостной биосистемы. Клод Бернар, привлекший внимание к стабилизации «внутренней среды», и Уолтер Кэннон, исследовавший гомеостатические функции вегетативной нервной систе­мы, черпали силу своих концепций из того, что в наши дни рассматривалось бы как анализ систем»,— писал Уотер-мен [132].

Когда же говорят о поддержании постоянства какой-либо отдельной переменной, например о температурном гомеостазе или гомеостазе сахара крови, то отдают от­чет в том, что такой гомеостаз возможен лишь в рамках общего гомеостаза целостной биологической системы.

Как бы ни были хорошо организованы регуляторные механизмы биосистемы, возможности их тем не менее ограничены. Для каждой биосистемы существует область условий внешней среды, в которой эти механизмы и могут обеспечить гомеостаз системы. Температура, влажность, уровень радиации, содержание газов в атмосфере, на­личие в окружающей среде пищи и воды — вот некоторые из факторов, определяющих область гомеостаза системы. Для каждого типа биосистем существуют некоторые пре­дельные — минимальные и максимальные — значения этих факторов, при выходе за которые система не только не может обеспечить гомеостаз, но и вообще не может под­держать стационарное неравновесное состояние.

Вблизи этих границ система может существовать — стационарное равновесное состояние в ней поддерживает ся, но при этом значения существенных переменных ока­зываются сильно зависящими от условий внешней среды. И только в средней части допустимой области существо­вания биосистемы регулирующие механизмы способны обеспечивать достаточно хороший гомеостаз, т.е. постоян­ство значений существенных переменных вне зависимости от внешних условий.

Рис. 3. К определению геометриче ской зависимости: температура тела опоссума ночью ( 1) и днем (2)

Зависимость переменных внутренней среды от внеш­них условий для системы, находящейся в стационарном состоянии, при этом при­нимает характерный вид кривой с плато посередине и двумя более крутыми участками по краям.

Разумеется, степень вы­раженности плато, его ши­рина сильно варьируются в разных биосистемах — чем выше организация био­системы, тем лучше ее ре­гулятивные способности, тем шире плато и тем бо­лее полого может идти го-меостатическая кривая.

Типичные гомеостатиче-ские зависимости ряда пе­ременных внутренней среды от переменных внешней среды содержат плато, переходящее в обе стороны в более кру­тые участки. Положение кривой, вообще говоря, зависит от режима функционирования системы. На рис. 3 приве­дена зависимость температуры тела центральноамерикан­ского опоссума от температуры окружающей среды ночью и днем. Поскольку это животное ведет ночной образ жиз­ни, то в режиме активности (ночью) гомеостатическая кривая располагается выше.

В сравнительной физиологии для описания зависимо­стей рассмотренного типа употребляются термины «ре­гуляция» и «конформация»: пологие и слабонаклонные участки кривых трактуются как регуляция, прямая пропорциональность—как конформация [112].

На рис. 4 приведен график, иллюстрирующий конформацию и регуляцию темпа потребления кислоро­да у животных с независимым дыханием. При снижении давления кислорода в среде рO2 организм увеличивает интенсивность дыхания, сохраняя в некотором диапазоне изменения внешних условий темп потребления О2 неиз­менным (регуляция); далее темп потребления кислорода падает (конформация).

Изучение характера гомеостатических кривых, как регуляции, так и конформации, чрезвычайно важно для понимания процессов управления и построения моделей механизмов управления в живых системах.

Рис. 4. Характеристики темпа потребления кислорода.

Большинство живых организмов имеет хорошо выра­женные гомеостатические свойства по отношению к ос­новным, определяющим фак­торам внешней среды. Одна­ко имеется и множество форм, не обладающих хорошим го-меостазом вообще. Так, в от­ношении теплового режима говорят о гомойотермных и пойкилотермных животных в зависимости от того, насколь­ко хорошо выражен у них эффект постоянства темпера­туры. Аналогично регуляция водного обмена и осмотиче­ского баланса у животных, обитающих в воде, проходит практически все градации —

от пойкилоосмотических животных до гомойосмотиче-ских.

Известно, что гомеостатические свойства организ­мов не оказывают существенного влияния на численность вида или ареал их расселения. Исключением, впрочем, являются случаи освоения новых территорий, когда еще не сложилось зрелое экологическое сообщество, и на­личия суровых условий обитания (пустыня, тундра). В этих случаях индивидуальные гомеостатические свой­ства могут оказаться существенными для данного вида животных. В нормальных же условиях выживание, чис­ленность и распространение вида зависят прежде всего от других факторов, например, отношений хищничества, соревнования за жизненные ресурсы [152].

Поэтому можно утверждать, что живые организмы сначала приобрели способность сохранять стационарное неравновесное состояние и лишь затем — свойство го-меостаза. Эта точка зрения принадлежит автору концепции гомеостаза У. Кэннону. «Не предполагается,— пи­шет он,— что все гомеостатические механизмы будут найдены у всех форм животных ... Амфибия не способна сохранять содержание воды и постоянство температуры вне зависимости от состояния внешнего мира. Рептилия, высший тип, не так быстро теряет воду через окружающий воздух, как амфибия, но подобно амфибии рептилия хладнокровна и, следовательно, ограничена в своей ак­тивности окружающим холодом ... Гомеостаз, наблюдае­мый у млекопитающих, является продуктом эволюцион­ного процесса» [154]. Можно допустить, следовательно, что первые организмы обладали лишь ограниченными го-меостатическими свойствами [146]. В то же время необхо­димое условие существования живых систем — поддер­жание стационарного неравновесного состояния или, что то же самое, адекватное снабжение их энергетической системы веществами, выполнялось безусловно.

Единство организма и среды предусматривает непре­рывное приспособление организма к изменяющимся условиям как единственно возможный способ существова­ния. Каждый акт такого приспособления предполагает возникновение внутри биосистемы некоторых изменений, обусловленных действием внешних сил и противодей­ствием организма. В широком смысле под адаптацией ор-_ганизма можно понимать совокупность приспособитель-"ных реакций, протекающих на различных иерархических уровнях в ответ на изменения вещественной, энергети­ческой среды и организации воздействующих на организм сигналов. Содержание понятия «адаптация» имеет два аспекта, один из которых связан с процессами приспо­собления биосистем к условиям среды, а другой — с со­стоянием адаптивности, которое достигается в процессе адаптации [66, 127].                           

Процесс адаптации биосистемы есть изменение ее биологических (физиологических, биохимических, мор­фологических) свойств и поведенческих реакций, направ­ленное на сохранение биосистемы как целого и ее гомео­стаза на всех системно-структурных уровнях органи­зации.

В результате процесса адаптации система приходит в состояние адаптированности, при котором в изменив­шихся условиях существования сохраняется обычный (или образуется повышенный) уровень жизнедеятельнос­ти и жизнеспособности. Процессы адаптации в биосисте­мах протекают с разными скоростями, поэтому иногда различают раннюю адаптацию, которая обеспечивается только адаптационными механизмами биосистемы, и позднюю адаптацию, достижение которой требует вклю­чения также и компенсаторных механизмов системы [127].

Состояние адаптации бывает полным, когда в системе сохраняется гомеостаз на всех уровнях организации жиз­ни. В этом случае сохраняются и все адаптационно-ком-пенсаторные возможности системы. Неполная адаптация возникает тогда, когда некоторые системы или подсисте­мы изменяют свои биологические параметры, но в резуль­тате включения компенсаторных механизмов общие, ин­тегральные показатели деятельности биосистемы как це­лого не нарушаются. При неполной адаптации возможно истощение адаптационно-компенсаторных механизмов, и при изменении условий существования в биосистеме может нарушиться стационарное неравновесное состо­яние.

Процесс адаптации возникает в системе всякий раз, когда она попадает в неадекватные условия среды. При этом под адекватными условиями понимаются такие, которые соответствуют генофенотипическим свойствам организма в данный момент [66]. Адаптация к неадекват­ным условиям среды требует включения все новых и но­вых регуляционных механизмов, с ухудшением условий среды она проходит три стадии — состояние нормы, состояние напряжения механизмов регуляции и, наконец, состояние патологии. Критериями перехода системы от состояния напряжения к патологии являются сохран­ность функции и структур и обратимость выявленных отклонений [100, 117].

Одним из важных направлений исследований пробле­мы адаптации биосистем является разработка критериев, позволяющих количественно оценивать степень адапта­ции, степень напряжения ее механизмов регуляции и пределы адаптации биосистем.

По временным параметрам адаптивные реакции орга­низма можно разделить на кратковременные, проявля­ющиеся при действии однократных или редко действу­ющих раздражений; онтогенетические, проявляющиеся при действии систематических раздражителей в процессе развития и обучения организма; и филогенетические, проявляющиеся в популяции в целом в результате воз­никновения у нее на основе изменчивости, наследствен ности и естественного отбора новых биологических ме­ханизмов, адекватных новым условиям.

Адаптация может рассматриваться как процесс при­способления и как состояние уже достигнутого уровня приспособления к уже изменившимся условиям существо­вания [126]. Онтогенетическую адаптацию можно рас­сматривать как состояние, промежуточное между нормой и патологией. Истинная адаптация не должна вызывать напряжения защитных и приспособительно-компенсатор-ных механизмов. При этом действие вредных факторов не должно превышать физиологическую меру защиты. По­рог вредного действия среды связан с переходными про­цессами, лежащими между физиологическими реакциями приспособления и состоянием их «полома» [101]. Состоя­ние адаптации, связанное с высоким и постоянным напря­жением защитных и приспособительно-компенсаторных механизмов, можно рассматривать как предпатологию, обусловленную неизбежным истощением резервов орга­низма.

Особое значение имеет изучение проблемы адаптации организма человека, что связано как с проникновением человека в новую среду обитания (арктические и антарк­тические условия, обитание под водой, пребывание в кос­мосе), так и с быстрым изменением химического состава среды обитания на Земле.

Процессы адаптации у человека сложнее, чем у живот­ных и у других видов биологических объектов. Одним из наиболее существенных отличий является то, что живот­ные в процессе адаптации изменяют свои биологические свойства под влиянием условий внешней среды, в то вре­мя как человеку свойственно не изменяться при измене­нии среды, а создавать условия, которые обеспечивают сохранение гомеостаза на всех системно-структурных уровнях его организма. Точнее говоря, человек не преоб­разует среду своего обитания, но включает все большую и большую часть этой среды в состав своеобразной био­технической системы, состоящей из организма человека и систем жизнеобеспечения, понимаемых в самом ши­роком смысле — от простой одежды и жилища до скафан­дров и космических лабораторий.

Биосистемам свойственна динамичность: оператив­ная, проявляющаяся в настоящих (в данный момент времени) реакциях на изменения и воздействия окружа­ющей среды; онтогенетическая, проявляющаяся в струк­турно-функциональных перестройках при развитии биосистемы в онтогенезе при адаптации и обучении; фило­генетическая, проявляющаяся в структурно-функцио­нальных изменениях биосистемы за счет наследственно­сти и эволюции вида.

С момента возникновения (рождения) любая биоло­гическая система подвержена изменениям на любом уровне иерархии — от макромолекулярного до поведен­ческого. Это свойство обеспечивается различными меха­низмами.

Эволюционная динамика (филогенетическая) — му­тации, кросинговер, рекомбинации хромосом—направ­лена на возникновение новых видов, развитие вида и приспособление его к окружающей среде. Этот вид ди­намики связан с перестройкой структур организма и соответствующим изменением функций.

Онтогенетическая динамика выражается в изменении числа клеток, их размеров, размеров органов, развитии систем организма и изменении его форм. На этот вид ди­намики оказывает влияние как наследственность, так и воздействие окружающей среды, а изменениям подвер­гаются структура и функция. Онтогенетическая динамика проявляется в адаптации всех иерархических уровней организма к изменившимся условиям среды.

Самый быстрый вид динамических изменений парамет­ров — это изменения, связанные с конкретной деятельностью организма. Примером могут служить функцио­нальные изменения работы сердечно-сосудистой систе­мы, системы дыхания при мышечной работе, экстренное изменение двигательной реакции при изменении обста­новки.

Для биосистемы характерна качественная неоднород­ность, проявляющаяся в том, что в рамках одной и той же функциональной системы совместно и слаженно работают подсистемы с качественно различными адекватными управляющими сигналами (химическими, физическими, информационными).

В качестве вещественных управляющих сигналов вы­ступают массы различных неорганических веществ (на­пример, ионы, молекулы кислорода, глюкозы), макро­молекулы органических гормонов (инсулин, адреналин). Энергетические управляющие сигналы — это теплота, свет, звук, давление, энергия импульсации нейронов. К информационным управляющим сигналам следует отнести, например, словесную обстановку, параметры импульсации нейронных систем (мгновенную частоту, фазу и другие).

Временная неоднородность биосистем проявляется в том, что в одной функциональной системе взаимодей­ствуют в достижении одного и того же результата под­системы с разными постоянными времени (медленнодей­ствующие — биохимические, гормональные; быстродей­ствующие — нервная; сверхбыстродействующие — ре­чевая, мыслительная, вторая сигнальная).

Практически любая функциональная система орга­низма включает все три вида управления — медленно­действующее вещественное с постоянной времени, рав­ной часам; среднедействующее энергетическое с постоян­ной времени, равной минутам, и быстродействующее информационное с постоянной времени, равной секундам.

Временная неоднородность используется организмом при формировании различных способов управления в одной и той же системе с целью достижения оптималь­ного результата. Так, на сердечно-сосудистую систему действуют информационные управляющие сигналы сим­патических и парасимпатических узлов нервной системы, вещественные — в виде гормонов, энергетические — в виде теплоты, мышечной работы. Все три типа систем управления действуют не изолированно, а взаимосвязан­но, что обеспечивает преобразование сигналов различной природы друг в друга.

Взаимодействие биосистем со средой, их постоянное приспособление к среде, эволюция невозможны без ди­алектического единства двух противоположных свойств:

структурно-функциональной организованности и струк­турно-функциональной вероятностности, стохастичности и изменчивости.

Структурно-функциональная организованность про­является на всех иерархических уровнях биосистем и ха­рактеризуется высокой устойчивостью биологического вида, его формы и внешнего вида, однообразием составля­ющих его элементов, органов и систем. На уровне макро­молекул это свойство обеспечивается репликацией макро­молекул, на уровне клетки — делением, на уровне особи и популяции — воспроизведением особей путем размножения.

Структурно-функциональная стохастичность био­систем функционально проявляется в разнообразии ре­акций в ответ на одни и те же воздействия (состояния) сре­ды и сигналы биосистем ниже- и вышележащих уровней иерархии. Структурно стохастичность проявляется в способности биосистемы с помощью различных струк­турных реализации добиваться однотипного функци­онального результата. Наиболее полно это проявля­ется при формировании новых условных рефлексов. У биосистем различного уровня иерархии существуют специальные механизмы, обеспечивающие реализацию свойства стохастичности. На уровне макромолекул — это мутации, на уровне клетки — рекомбинации хромо­сом, на уровне организма и популяций — рекомбинации генетического фонда.

Динамика стохастичности биосистем проявляется в изменении во времени распределения реакций на один и тот же набор сигналов внешней среды или смежных иерархических уровней.

Важными свойствами биосистем являются также структурная дискретность, без которой невозможно было бы их различие, и функциональная непрерывность, т. е. вариабельность количественных параметров в пре­делах одной и той же дискретности.



2019-12-29 454 Обсуждений (0)
СВОЙСТВА БИОЛОГИЧЕСКИХ СИСТЕМ 0.00 из 5.00 0 оценок









Обсуждение в статье: СВОЙСТВА БИОЛОГИЧЕСКИХ СИСТЕМ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (454)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)