Тема 1. Прогнозирование с учетом сезонной составляющей
Институт экономики и управления Кафедра Экономическая кибернетика
Методические указания по лабораторным работам
По дисциплине Методы социально-экономического прогнозирования
Для специальности 080116.65 «Математические методы в экономике»
Методические указания разработаны в соответствии с составом УМКД
Методические указания разработала Порошина Л.А. _____________ Методические указания утверждены на заседании кафедры, протокол № ______ от «___» _______________ 200__ г. Зав. кафедрой _________ «___» ______________ 200__ г. Пазюк К.Т. Методические указания по лабораторным работам по дисциплине «Эконометрическое моделирование» включают тематику лабораторных заданий, выполняемых во время аудиторных занятий.
Методические указания рассмотрены и утверждены на заседании УМКС и рекомендованы к изданию протокол № ______ от «___» _______________ 200__ г. Председатель УМКС _______ «___» __________ 200__ г. Директор института _________ «___» ____________ 200__ г. Зубарев А.Е. Введение Реалии нынешнего этапа развития российской государственности выдвигают в число первоочередных задачу перехода к стабильному, предсказуемому и эффективному развитию экономики страны, что в свою очередь не возможно без специальных знаний в области методологии, методики и технологии составления научно-обоснованных макро- и микроэкономических прогнозов социально-экономического развития. Масштаб стоящих перед российским бизнесом проблем, а также качественный уровень развития современного научно-технического потенциала требует соответствующей теоретической и практической подготовки специалистов в области экономико-математического моделирования. Прогнозная информация, с одной стороны, необходима как основа планирования деятельности любого социально-экономического объекта, а с другой стороны - как предварительная оценка последствий принимаемых решений с целью их оптимизации. Отсюда ясна важность данной дисциплины для формирования специалиста в области математических методов и исследования операций в экономике. В этой связи цель дисциплины "Методы социально-экономического прогнозирования" - вооружить студентов специальности "Математические методы в экономике" - 080116.65 знаниями общих закономерностей составления научных прогнозов развития социально-экономических объектов; познакомить их с максимально широким инструментарием выработки прогнозов развития социально-экономических объектов, а также методиками его использования в практике прогнозирования; выработать в процессе обучения у студентов навыки грамотного использования аппарата математического моделирования посредством применения передовых информационных технологий. Задачи курса: изучение методологических основ прогнозирования, а также приемов и методов прогнозирования экономических процессов. Дисциплина «Методы социально-экономического прогнозирования» опирается на материал учебных дисциплин: «Математический анализ», «Теория вероятности и математическая статистика», «Экономическое моделирование», «Математические методы исследования операций», «Эконометрика» и других дисциплин. В соответствии с Государственным образовательным стандартом она является дисциплиной специализации по специальности «Математические методы в экономике» и полностью соответствует по содержанию его требованиям. Основная цель лабораторных занятий - углубленное изучение проблем, затронутых в лекционном курсе, и отработка навыков в применении изучаемых методов и процедур прогнозирования с использованием современного программного обеспечения персональных компьютеров. В качестве базового информационно-программного инструментария на лабораторных работах предлагается воспользоваться продуктами Excel, StatGraphics, Statistica. В ходе освоения дисциплины студенты могут ознакомиться и с дополнительными программными средами, например, Matlab (Statistics Toolbox, GARCH Toolbox), Mathcad, SPSS, Eviews и др., а также специальными оптимизационными и модулями математических пакетов Matlab (Optimization Toolbox), Mathcad, Mathematica и др. Изучение дисциплины заканчивается написанием и защитой курсовой работы и сдачей итогового экзамена. Краткие характеристики лабораторных работ Тема 1. Прогнозирование с учетом сезонной составляющей Задание. Построить точечный и интервальный прогноз на основе мультипликативной модели, аддитивной модели и модели Винторса. Исполнение: выполнение индивидуального задания с использованием Excel. Интерпретация результатов решения. Оценка. Практическая реализация теоретических методов прогнозирования. Время выполнения заданий: 2 часа.
Методические указания Построение аддитивной модели временного ряда. Обратимся к данным об объеме правонарушений на таможне за четыре года, представленным в табл. 1. Было показано, что данный временной ряд содержит сезонные колебания периодичностью 4, т.к. количество правонарушений в первый-второй кварталы ниже, чем в третий-четвертый. Рассчитаем компоненты аддитивной модели временного ряда. Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого: 1.1. Просуммируем уровни ряда последовательно за каждые четыре квартала со сдвигом на один момент времени и определим условные годовые объемы потребления электроэнергии (гр. 3 табл. 1). 1.2. Разделив полученные суммы на 4, найдем скользящие средние (гр. 4 табл. 1). Полученные таким образом выровненные значения уже не содержат сезонной компоненты. 1.3. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 5 табл. 1). Таблица 1 – Расчёт сезонной компоненты
Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 1). Используем эти оценки для расчета значений сезонной компоненты (табл. 2). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю. Таблица 2 – Расчёт скорректированной сезонной компоненты Показатели | Год | № квартала, | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
I | II | III | IV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 1999 | – | – | 213,75 | 349,5 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2000 | -336,75 | -238,375 | 277,875 | 316,25 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2001 | -299,25 | -319,875 | 322,625 | 214,375 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2002 | -233 | -233,75 | – | – | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Всего за -й квартал | -869 | -792 | 814,25 | 880,125 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Средняя оценка сезонной компоненты для -го квартала, | -289,667 | -264 | 271,417 | 293,375 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Скорректированная сезонная компонента, | -292,448 | -266,781 | 268,636 | 290,593 |
Для данной модели имеем:
.
Корректирующий коэффициент: .
Рассчитываем скорректированные значения сезонной компоненты ( ) и заносим полученные данные в таблицу 2.
Проверим равенство нулю суммы значений сезонной компоненты:
.
Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины (гр. 4 табл. 3). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.
Таблица 3 – Трендовая и слуайная компонента
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
1 | 375 | -292,448 | 667,448 | 672,700 | 380,252 | -5,252 | 27,584 |
2 | 371 | -266,781 | 637,781 | 673,624 | 406,843 | -35,843 | 1284,721 |
3 | 869 | 268,636 | 600,364 | 674,547 | 943,183 | -74,183 | 5503,117 |
4 | 1015 | 290,593 | 724,407 | 675,470 | 966,063 | 48,937 | 2394,830 |
5 | 357 | -292,448 | 649,448 | 676,394 | 383,946 | -26,946 | 726,087 |
6 | 471 | -266,781 | 737,781 | 677,317 | 410,536 | 60,464 | 3655,895 |
7 | 992 | 268,636 | 723,364 | 678,240 | 946,876 | 45,124 | 2036,175 |
8 | 1020 | 290,593 | 729,407 | 679,163 | 969,756 | 50,244 | 2524,460 |
9 | 390 | -292,448 | 682,448 | 680,087 | 387,639 | 2,361 | 5,574 |
10 | 355 | -266,781 | 621,781 | 681,010 | 414,229 | -59,229 | 3508,074 |
11 | 992 | 268,636 | 723,364 | 681,933 | 950,569 | 41,431 | 1716,528 |
12 | 905 | 290,593 | 614,407 | 682,857 | 973,450 | -68,450 | 4685,403 |
13 | 461 | -292,448 | 753,448 | 683,780 | 391,332 | 69,668 | 4853,630 |
14 | 454 | -266,781 | 720,781 | 684,703 | 417,922 | 36,078 | 1301,622 |
15 | 920 | 268,636 | 651,364 | 685,627 | 954,263 | -34,263 | 1173,953 |
16 | 927 | 290,593 | 636,407 | 686,550 | 977,143 | -50,143 | 2514,320 |
Шаг 4. Определим компоненту данной модели. Для этого проведем аналитическое выравнивание ряда ( ) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
.
Подставляя в это уравнение значения , найдем уровни для каждого момента времени (гр. 5 табл. 3).
Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням значения сезонной компоненты для соответствующих кварталов (гр. 6 табл. 3).
На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.
Рис. 1 – Динамика скорректированных показателей
Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.
Следовательно, можно сказать, что аддитивная модель объясняет 97% общей вариации уровней временного ряда количества правонарушений по кварталам за 4 года.
Шаг 6. Прогнозирование по аддитивной модели. Предположим, что по нашему примеру необходимо дать прогноз об общем объеме правонарушений на I и II кварталы 2003 года. Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда
.
Получим
;
.
Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом,
;
.
Т.е. в первые два квартала 2003 г. следовало ожидать порядка 395 и 422 правонарушений соответственно.
Построение мультипликативной модели рассмотрим на данных предыдущего примера.
2020-02-04 | 242 | Обсуждений (0) |
5.00
из
|
Обсуждение в статье: Тема 1. Прогнозирование с учетом сезонной составляющей |
Обсуждений еще не было, будьте первым... ↓↓↓ |
Почему 1285321 студент выбрали МегаОбучалку...
Система поиска информации
Мобильная версия сайта
Удобная навигация
Нет шокирующей рекламы