Мегаобучалка Главная | О нас | Обратная связь


Инверсия пространства.



2020-02-04 498 Обсуждений (0)
Инверсия пространства. 0.00 из 5.00 0 оценок




Определение.Пусть в пространстве дана сфера S с центром О и радиусом R. Инверсией относительно сферы S называется преобразование, переводящее произвольную точку А, отличную от О, в точку А´, лежащую на луче ОА такую, что . S – сфера инверсии, О – центр, R – радиус инверсии.

Дополним пространство бесконечно удалённой точкой и поставим её в соответствие точке О (тогда, очевидно, бесконечно удалённая точка перейдёт при инверсии в точку О).

 

Будем считать, что любая прямая и любая плоскость содержат бесконечно удалённую точку пространства.

 

Определение. Углом между двумя пересекающимися сферами называется угол между касательными плоскостями к сферам, проведёнными через любую из точек пересечения сфер. Углом между пересекающимися сферой и плоскостью называется угол между касательной плоскости к сфере, проведённой через любую из точек пересечения сферы и плоскости, и данной плоскостью.

 

Определение. Углом между двумя пересекающимися окружностями (окружностью и прямой) в пространстве называется угол между касательными к окружностям, проведёнными через любую из точек пересечения окружностей. Углом между пересекающимися окружностью и прямой называется угол между касательной к окружности, проведённой через любую из точек пересечения окружности и прямой, и данной прямой.

 

С помощью движений пространства легко доказать корректность этих определений (т.е., что угол не зависит от точки пересечения сфер (окружностей), которую мы рассмотрели). Например, для сфер можно перевести одну точку пересечения в другую, сохранив сферы, поворотом вокруг оси, проходящей через центры сфер.

Свойства инверсии.

1. Преобразование, обратное инверсии, – та же инверсия.

2. Прямая (плоскость), проходящая через точку О, переходит в себя.

3. Прямая (плоскость), не содержащая точку О, переходит в окружность (сферу), проходящую через точку О.

4.  Окружность (сфера), содержащая точку О, переходит в прямую (плоскость), не содержащую О.

5. Сфера, не содержащая точки О, переходит в сферу.

6. Окружность, не содержащая точки О, переходит в окружность.

7. Сохраняется угол между пересекающимися сферами (плоскостями, сферой и плоскостью).

8. Сохраняется угол между пересекающимися окружностями (прямыми, окружностью и прямой).

9. Если А´, В´ - образы точек А, В, то .

10. Если сфера S´ - образ сферы S, то О – центр гомотетии, переводящей S в S´.

 

Доказательства свойств.

Свойства 1-5, 7, 9, 10 доказываются аналогично свойствам инверсии на плоскости.

Свойство 6 следует из того, что окружность можно представить в виде пересечения двух сфер.

Докажем свойство 8. Будем говорить, что окружности (окружность и прямая) касаются, если они лежат на одной сфере (в одной плоскости) и имеют ровно одну общую точку. Как легко видеть, касающиеся окружности (окружность и прямая) переходят при инверсии в касающиеся окружности (окружность и прямую) или параллельные прямые. Поэтому угол между образами окружностей равен углу между образами касательных прямых, проведённых через точку касания.

Итак, утверждение достаточно доказать для пересекающихся прямых. При инверсии с центром О эти прямые переходят в окружности, проходящие через О. Причём касательные к ним в точке О параллельны этим прямым, т.е. угол между ними сохраняется.

 

Задача.

Семь вершин выпуклого шестигранника, все грани которого – четырёхугольники, лежат на одной сфере. Доказать, что и восьмая вершина этого шестигранника лежит на этой сфере.

Решение.

Пусть ABCDA1B1C1D1 – наш шестигранник, и пусть для определённости вершина D1 – та вершина, про которую не известно, лежит ли она на данной сфере. Сделаем инверсию с центром в точке В. При этой инверсии данная сфера перейдёт в некоторую плоскость α. Точки B1´, C1´, C´, D´, A´, A1´, образы точек B1, C1, C, D, A, A1, лежат в плоскости α, причём точки C1´, D´, A1´ лежат на сторонах треугольника B1´C´A´ (см. рис.).

Плоскости (B1A1C1), (CDC1), (DAA1) перейдут в сферы, описанные около тетраэдров BB1´A1´C1´, BC´D´C1´, BD´A´A1´. Точка D1 перейдёт в точку пересечения этих сфер, отличную от В. Фактически нам надо показать, что эта точка лежит в плоскости α. Для этого достаточно показать, что окружности, описанные около треугольников B1´A1´C1´, C´D´C1´, D´A´A1´, пересекаются в одной точке. А это уже простой факт планиметрии. Действительно, пусть окружности, описанные около треугольников B1´A1´C1´, C´D´C1´, пересекаются в точке О. Тогда, как легко убедиться, , и окружность, описанная около треугольника D´A´A1´, проходит через точку О. Доказательство завершено.

 



2020-02-04 498 Обсуждений (0)
Инверсия пространства. 0.00 из 5.00 0 оценок









Обсуждение в статье: Инверсия пространства.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (498)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)