Биномиальное распределение
Предположим событие Е во всех случаях имеет одну и ту же вероятность , тогда вероятность противоположного события будет так же постоянна и может определяться по формуле . Такой подход позволяет рассматривать практически любое пространство элементарных событий, как дихотомное (то есть состоит из противоположных событий). Допустим, необходимо определить вероятность появления события Е ровно k раз в n независимых испытаниях. В этом случае событие противоположное Е произойдет n-k раз. Отобрать k-элементов из n можно различными способами, каждый из которых несовместное событие, появление которого это результат игры случая. В математике доказано, что число различных комбинаций из n элементов по k определяется по формуле: , ! это произведение натурального ряда чисел, каждое из которых больше предыдущего на 1 (начиная с 1). В соответствии с теоремой умножения вероятностей вероятность появления одной из возможных комбинаций определяется по формуле: Формула, которая определяет вероятность появления события Е k-раз в n-независимых испытаниях, называется формулой Бернулли. А схема отбора из дихотомной совокупности схемой Бернулли (или схемой возвращаемого шара или схемой повторного отбора). Пример: Для обслуживания покупателей супермаркета в час пик без очередей должно работать не менее 6 контролеров-кассиров из 8. Вероятность отсутствия одного из работников составляет 0,1. Найти вероятность работы расчетно-кассового узла без очередей. Поскольку нас устраивает работа 6, 7, 8 кассовых кабин, то вероятность появления одного из этих несовместных событий будет определяться по формуле сложения вероятностей. Каждая из этих вероятностей может определяться по формуле Бернулли. Таким образом, в 96 случаях из 100 очередей не будет.
Если при фиксированной численности n-повторного отбора из дихотомной совокупности изменять величину k, то полученное распределение вероятности будет называться биномиальным. Поскольку его ординаты представляют собой элементы разложения бинома . Число наступления событий в n-независимых испытаниях называется наивероятнейшим, если этому числу соответствует наибольшая вероятность. При этом если k смешанное число, то в результате выбирается ближайшее к этому смешанному числу, но меньше его, целое число. В примере с кассирами . Математическое ожидание М(k) числа появления событий Е в n-независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании. Если перейти от абсолютного числа раз появления события к плотностям распределения вероятностей, то будет равно p. Дисперсия биномиального распределения D(k)= , - по плотности. График биномиального распределения зависит от соотношения p и q. Если p равно q и равно 0,5, то распределение симметрично, в противном случае (p≠q) наблюдается асимметрия или скошенность полигона. Показатель асимметрии биномиального распределения определяется по формуле: Если , то высота биномиального распределения соответствует высоте кривой нормального распределения. Доказано, что с увеличением числа испытаний значения , а биномиальное распределение стремится к нормальному распределению.
Популярное: Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Почему стероиды повышают давление?: Основных причин три... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (511)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |