Мегаобучалка Главная | О нас | Обратная связь


Вычисление двойного интеграла. Двукратный интеграл



2015-12-08 917 Обсуждений (0)
Вычисление двойного интеграла. Двукратный интеграл 0.00 из 5.00 0 оценок




При вычислении двойного интеграла элемент площади нам удобно представить в ином виде. Будем разбивать область интегрирования D в плоскости Oxy на частичные области посредством двух систем координатных линий: x=const, y=const. Этими линиями служат прямые, параллельные соответственно оси Oy и оси Ox, а частичными областями - прямоугольники со сторонами, параллельными осям координат. Ясно, что площадь каждой частичной области будет равна произведению соответствующих и . Поэтому элемент площади мы запишем в виде т.е. элемент площади в декартовых координатах является произведением дифференциалов независимых переменных. Мы имеем

. (*)

При вычислении двойного интеграла (*) мы будем опираться на тот факт, что он выражает объём V цилиндрического тела с основанием D, ограниченного поверхностью . Напомним, что мы уже занимались задачей об объёме тела, когда рассматривали применения определённого интеграла к задачам геометрии и получили формулу

(**)

Рис.3

где S(х) - площадь поперечного сечения тела плоскостью, перпендикулярной к оси абсцисс, а и - уравнения плоскостей, ограничивающих тело. Применим теперь эту формулу к вычислению двойного интеграла

Предположим сначала, что область интегрирования D удовлетворяет следующему условию: любая прямая, параллельная оси Ox или Oy, пересекает границу области не более чем в двух точках. Соответствующее цилиндрическое тело изображено на рис.3

Область D заключим внутрь прямоугольника

стороны которого касаются границы области в точках А, В, С, Е. Интервал [а, b] является ортогональной проекцией области D на ось Ох, а интервал [c, d] - ортогональной проекцией области D на ось Oy. На рис.5 область D показана в плоскости Оху.

Точками A и C граница разбивается на две линии: ABC и AEC, каждая из которых пересекается с любой прямой, параллельной оси Oy, в одной точке. Поэтому, их уравнения можно записать в форме, разрешенной относительно y:

(ABC),

(AEC).

Аналогично точками В и Е граница разбивается на линии ВАЕ и ВСЕ, уравнения которых можно записать так:

(BAE),

(BCE).

Двукратный интеграл

Двукратный (повторный) интеграл . Пусть D - область, простая в направлении оси Oy. Рассмотрим выражение . Эта конструкция определяется через два обычных определённых интеграла. После интегрирования по у во внутреннем интеграле (переменная х при этом рассматривается как постоянная) и подстановки по у в пределах от до получается функция, зависящая только от х, которая интегрируется в пределах от a до b. В дальнейшем мы будем обычно записывать этот объект без внутренних скобок:

.

Можно показать, что двукратный интеграл обладает всеми свойствами двойного интеграла:

Свойства линейности и интегрирования неравенств следуют из этих свойств определённого интеграла; интеграл от единичной функции даёт площадь областиD: ;

теоремы об оценке и о среднем следуют из перечисленных свойств. Единственное свойство, с которым придётся повозиться - это свойство аддитивности. Мы докажем его в простой, но достаточной для нас форме: если область D разбита на две подобласти D1 и D2 прямой, параллельной одной из координатных осей, то двукратный интеграл по области D равен сумме интегралов по D1 и D2: J(D) = J(D1) + J(D2).

Первый случай: прямая x = a1 параллельна оси Oy. Тогда



2015-12-08 917 Обсуждений (0)
Вычисление двойного интеграла. Двукратный интеграл 0.00 из 5.00 0 оценок









Обсуждение в статье: Вычисление двойного интеграла. Двукратный интеграл

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (917)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)