Мегаобучалка Главная | О нас | Обратная связь


Параллельными идеально проводящими поверхностями



2015-12-15 567 Обсуждений (0)
Параллельными идеально проводящими поверхностями 0.00 из 5.00 0 оценок




1.Задача – найти характеристики электромагнитного поля, которое существует в диэлектрической среде в пространстве между идеально проводящими поверхностями. Для решения задачи необходимо подробно описать поле в этом пространстве с помощью уравнений Максвелла и решить полученные уравнения с учетом граничных условий. На рис. 3-58 приведены две проводящие плоскости, расстояние между которыми a. Нижняя плоскость имеет координату x = 0, верхняя – координату x = a. Диэлектрическая и магнитная проницаемости среды между плоскостями, соответственно, равны e и m. Диэлектрическая среда, в которой распространяется волна, является непроводящей и нейтральной.

Допустим, волна распространяется в направлении оси z и векторы E и H волны не зависят от координаты y. В этом случае в уравнениях Максвелла для ротора векторов E и H производные по координате y равны нулю. Приняв во внимание, что два вектора равны, если равны их компоненты, запишем уравнения для компонент роторов E и H относительно декартовой системы.

Из уравнения [Ñ, E] = - имеем:

1) - = - ; 2) - = - ; 3) = - .

Из уравнения [Ñ, H] = :

4) - = ; 5) - = ; 6) = .

 

Волна распространяется вдоль оси z, поэтому полученные шесть уравнений распадаются на две системы независимых уравнений:

- уравнения (1), (3) и (5) содержат компоненты Ey, Hx, Hz, которые описывают волну H-типа (ТЕ-типа), т.е. поперечно-электрическую волну - вектор E имеет только поперечную компоненту Ey;

- уравнения (2), (4) и (6) содержат компоненты Ex, Ez, Hy, которые описывают волну E-типа(ТМ-типа), т.е. поперечно-магнитную волну - вектор H имеет только поперечную компоненту Hy.

Запишем эти системы уравнений в комплексной форме:

- уравнения, описывающие поперечно-электрическую волну - волнуH-типа

= ; = - ; - = ; (157)

- уравнения, описывающие поперечно-магнитную волну- волнуE-типа

= ; = ; - = - . (158)

 

2. Поперечно-магнитная волна (E-волна). Из первого и второго уравнений системы (158) выразим компоненты и :

= , = (159)

Подставим уравнения (159) в третье уравнение системы (158), получим:

+ + k2 = 0, (160)

где k2 = w2ee0mm0 – квадрат волнового числа в свободном пространстве Напомним, k = = , где v = - фазовая скорость волны.

Уравнение (160) описывает поперечно-магнитное поле в направляющей системе – в волноводе из двух проводящих плоскостей. Граничные условия в этом волноводе выражаются в равенстве нулю тангенциальных составляющих вектора E электромагнитного поля на проводящих поверхностях

= = 0 при x = 0 и x = a. (161)

Отсюда имеем:

= 0 при x = 0 и x = a. (161*)

Будем искать решение уравнения (160), описывающее поперечно-магнитное поле в волноводе. Замечаем, что в уравнении (160) поперечное магнитное поле зависит от координат x и z (см. также рис. 3-57). Уравнения такого типа решаются методом разделения переменных. Искомая функция представляется в виде произведения функций, каждая из которых зависит только от одного аргумента (здесь, от одной из координат). Запишем

= X(x) Z(z). (162)

Подставим (162) в исходное уравнение (160), и, обозначив производные от одной координаты штрихами, получим:

X//(x) Z(z) + X(x) Z//(z) +k2 X(x) Z(z) = 0,

где введены обозначения: X//(x) º ; Z//(z) º .

Разделим полученное уравнение на X(x) Z(z), получим:

+ + k2 = 0. (163)

Уравнение (163) должно быть верным в любой точке поперечного сечения волновода (при любом значении координаты x в плоскости поперечного сечения с координатой z).

В частности, если, например, выбрать некоторое поперечное сечение волновода с координатой z = const, то в этом сечении слагаемое = 0. Следовательно, в этом сечении = const, т.к. k2 = const и не зависит от x и z. Аналогично при фиксированном x = const получим, что = const. Итак, уравнение (163) удовлетворяется в любых поперечных сечениях волновода в том случае, если все слагаемые в этом уравнении являются постоянными величинами. Таким образом, уравнение (163) равносильно двум уравнениям:

= - ; = . (164)

Из уравнений (163) и (164) следует, что

= - k2, (165)

где x будем называть поперечным коэффициентом волны по оси x. Уравнения (164) приведем к стандартному виду, раскрыв явный вид обозначений X//(x) и Z//(z):

+ X = 0, (166)

- Z = 0. (166*)

Решение этих уравнений хорошо известно. Уравнение (166) по виду похоже на уравнение незатухающих колебаний (здесь волна!). Общее решение (166) запишем в виде

X(x) = A1 sin xx + B1 cos xx.

Уравнения вида (166*) называются уравнениями Гельмгольца. С этим уравнением мы уже встречались, например, в § 3.7.5 [уравнения (117) и (118)]. Общее решение (166*) запишем в виде

Z(z) = C + D .

Таким образом, поперечное магнитное поле выразится уравнением:

= X(x) Z(z) = (A1 sin xx + B1 cos xx) (C + D ). (167)

 

Полученное уравнение (167) совместно с уравнениями (159) позволяют определить все компоненты электромагнитного поля в волноводе, ибо производные по x и z определяют компоненты и . Неизвестные коэффициенты x и g в (167) определим, исходя из граничных условий.

Производная по координате x

=x (A1 cos xx - B1 sin xx) (C + D ). (168)

Из граничных условий (161*) при x = 0 и x = a имеем:

x (A1 cos xx - B1 sin xx) = 0. (169)

Уравнение (169) выполняется при двух условиях: 1) или поперечный коэффициент x = 0; 2) или же (A1 cos xx - B1 sin xx) = 0. Рассмотрим отдельно оба случая.

 

1. Если положить, что поперечный коэффициент x = 0, то в этом случае из (168) следует, что при любых значениях x в волноводе = 0, поэтому, при x = 0 компонента = 0

во всех точках волновода [см. (159)], а не только на поверхности проводящих плоскостей. Итак, при x = 0 составляющая электрического поля в направлении распространения волны (в направлении оси z) отсутствует, т.е. в волноводе распространяется плоская волна с компонентами и . Из соотношения (165) = - k2 получаем, что в этом случае постоянная распространения = ik, т.е. при x = 0 постоянная в волноводе соответствует постоянной распространения волны в свободном пространстве (k = ).

Подставим x = 0 и = ik в (159) и (167), получим систему уравнений, описывающих волну при данных коэффициентах:

= 0; (170)

= = ( - ) = Z0 ( - ); (171)

= (A1 sin xx + B1 cos xx) (C + D ) = + = + . (172)

Волновое сопротивление диэлектрической среды волновода

Z0 = = = = . (173)

Еще раз подчеркнем, условие x = 0 приводит к системе уравнений (170), (171) и (172), которые описывают в волноводе плоскую электромагнитную волну. Такую волну в технической электродинамике обычно обозначаю как ТЭМ-волна (поперечная электромагнитная волна).

Итак, при x = 0 в волноводе наблюдается сумма двух волн – ( ) и ( ) – бегущих навстречу друг к другу по оси z, где и комплексные амплитуды встречных волн. Разумеется, существование встречных волн может быть обусловлено только ограниченностью пространства волновода в направлении оси z, т.е. наличием преграды в направлениях z ® + ¥ и z ® - ¥. Преграды приводят к возникновению отраженной (встречной) волны, и, соответственно, интерференции встречных волн. Данное обстоятельство автоматически учитывается решениями (171) и (172).

Реальные волноводы ограничены в размерах по длине волновода, что обусловливает существование в волноводе встречных волн. При резонансных частотах (резонансных длинах волн) в волноводе будет существовать стоячая волна. Напомним, резонансные длины волн l, при которых возникает стоячая волна, определяются соотношением l = n , где l - длина волновода в направлении z, n = 1, 2, 3, …

Допустим, в направлении z ® + ¥ преграда отсутствует (волновод открыт), тогда встречная волна не возбуждается ( = 0) , и уравнения (170), (171) и (172) примут вид

= 0; = Z0 = ; = = . (174)

Система уравнений (4.174) описывают плоскую бегущую электромагнитную волну, аналогичную плоской волне в свободном пространстве.

Волновод как направляющая система характеризуется величиной Zc, называемой характеристическим сопротивлением волновода. Zc определяется отношением поперечной проекции вектора Eк соответствующей поперечной проекции вектора H. Из (174) следует, что в E-волне при x = 0 характеристическое сопротивление

Zc = = Z0 = . (175)

Характеристическое сопротивление волновода при x = 0 совпадает с волновым сопротивлением диэлектрической среды Zc = Z0. Это аналогично ситуации, когда плоская волна распространяется в свободном пространстве (в волноводе при x = 0 реализована плоская волна).

 

2. Если положить, что (A1 cos xx - B1 sin xx ) = 0 при x = 0 и x = a , то при этих граничных значения x данное уравнение будет выполняться, если

A1 = 0; sin xa = 0.

Откуда поперечный коэффициент (поперечное волновое число)

x = , m = 0, 1, 2, … (176)

Подставим (176) в соотношение (165), тогда в рассматриваемом случае постоянная распространения определится соотношением

= . (177)

Подставим условие A1 = 0 в (167), получим уравнение компоненты магнитного поля

= (A1 sin xx + B1 cos xx) (C + D ) = (B1C + B1D ) =

= ( + ) .

Далее будем рассматривать уравнения компонент электромагнитного поля в волноводе в отсутствии отражения волны ( = 0). В этом случае уравнение Е-волны для компоненты

= . (178)

Уравнения для компонент и получим из уравнений (159). Уравнение для компоненты

= = . (179)

Уравнение для компоненты

= = . (180)

Системе уравнений (178), (179), (180) описывает волну Е-типа (ТМ-типа), т.е. поперечно-магнитную волну.

В системе уравнений (178), (179), (180) m = 0, 1, 2, … . В частном случае m = 0 эта система уравнений переходит в систему уравнений (170), (171), (172), ибо в этом случае x = 0. Таким образом, рассматриваемая ситуация, когда (A1 cos xx - B1 sin xx ) = 0, включает в себя и рассмотренную ранее первую ситуацию. Говорят, волна ТЭМ-типа ( = 0) является вырожденным случаем волны поперечно-магнитного типа.

Уравнение (180) показывает, что в поперечном направлении по оси x в интервале от x = 0 до x = a электрическое поле имеет форму стоячей волны. Число полуволн, укладываемых в интервале 0 £ x £ a, определяется натуральным рядом чисел m = 1, 2, 3, … На проводящих поверхностях, т.е. при x = 0 и x = a касательная составляющая электрического вектора, разумеется, всегда равна нулю: = 0. Это формально следует и из (180), т.к. при x = 0 и x = a функция = 0 при любом m. Далее, допустим, число m = 1. При x = a/2 имеем: = 1. При m = 2 функция = 1 (по модулю) в точках с координатами x = a/4, x = 3a/4 и = 0 в точке с координатой x = a/2. Рассмотренные оценки приведены на рис. 3-59 (на рисунке начальные фазы при разных m приняты одинаковыми, максимальные амплитуды Ez (x) как функции x взяты произвольно).

 

3. Критическая частота и критическая длина волны волновода. Постоянная распространения (177) при k > будет чисто мнимой величиной: = i ,

где = - вещественное число. В этом случае система уравнений (178), (179), (180) описывают поперечно-магнитную волну, распространяющуюся вдоль z. Действительно, например, уравнение для мгновенной комплексной магнитной составляющей примет вид:

Hy(к)(z,t) = = = ,

Из этого уравнения видно, что вещественный коэффициент имеет смысл волнового числа, характеризующей распространение волны в волноводе. Назовем продольным волновым числом.

Аналогичные уравнения с членом запишутся для Ex(к)(z,t), Ez(к)(z,t). Эти уравнения являются уравнениями синусоидальной волны в комплексной форме, распространяющейся с фазовой скоростью v = вдоль оси z. При k < постоянная распространения = = = является вещественной величиной. Множитель в уравнении для мгновенной комплексной магнитной составляющей

Hy(к)(z,t) =

определяет экспоненциальное убывание амплитуды около источника (генератора) электромагнитной волны, т.е. в этом случае затухание волны произойдет практически около генератора электромагнитной волны. Приведем оценку. При низких частотах = » . Постоянная распространения здесь имеет смысл обратной величины расстояния l0 , на которой амплитуда уменьшается в e » 2,7 раз, т.е. = . Следовательно, при низких частотах l0 » . Например, при m = 1 и a = 1,6 см практическое расстояние, на которое проникает электромагнитная волна от генератора в волновод, имеет значение l0 » 0,5 см. При других m глубина проникновения будет еще меньше.

При любых значениях m и a можно подобрать частоты wкр. = 2p fкр., когда = 0, что выполняется при условии

k = x или wкр = .

Отсюда fкр = = , (181)

где v - фазовая скорость волны. Критическая частота fкр является собственной характеристикой волновода, определяемая геометрией волновода и свойствами среды, заполняющий волновод.

Например, для волновода при m = 1 и a = 1,6 см, в котором диэлектриком является воздух (e »1, m » 1), fкр = » 9,4 (ГГц); при m = 2 критическая частота fкр = 18,8 ГГц и т.д.

Критическая длина электромагнитной волны, соответствующая критической частоте fкр. волновода, определяется отношением скорости электромагнитной волны в вакууме c = к частоте fкр:

lкр. = = = = . (182)

Например, в вакууме e =1, m =1 и lкр. = . Таким образом, в волноводе распространяется бегущая волна с длиной волны l, если l < lкр, т.е l < 2a. В приведенном примере l < 3,2 см.

Если частота волны выше критической частоты (f > fкр), то в этом случае в волноводе распространяется электромагнитная волна. Постоянная распространения волны с учетом (181) и соотношения k = = примет вид:

= i = i = ik = ik = ik . (183)

Подставим в это соотношение формулу (4.182), тогда, с учетом соотношения c = v , получим

= ik = ik = ik . (184)

Из уравнений (179) и (180) следует, характеристическое сопротивление волновода определится соотношением:

Zc = = = = = = Z0 .

Отсюда видно, что характеристическое сопротивление волновода в случае поперечно-магнитных волн (ТМm-волн) меньше волнового сопротивления среды, заполняющего волновод Z0.

 

4. Поперечно-электрическая волна (волна H- или ТE-типа). Поперечно-электрическую волну описывает система уравнений (157). Решение этих уравнений аналогично решению E-волны. Из первого и второго уравнений системы (157) получим

= , = (185)

Подставив (184) в третье уравнение системы, получим уравнение для

+ + k2 = 0. (186)

Рассматриваем распространение волны в положительном направлении оси z.Применив метод разделения переменных и граничные условия

= 0 при x = 0 и x = a,

получаем уравнения для проекций , , :

= . (187)

= . (188)

= . (189)

Формулы для критической частоты и критической длины волны H-волны аналогичны формулам в случае E-волны [формулы (181), (182)].

 

Из уравнений (187) и (188) следует, характеристическое сопротивление волновода при H-волне определится соотношением: Zc = = Z0 .

При ТЕ-волне характеристическое сопротивление волновода больше Z0.

 

5.Волновые числа и соответствующие длины волн, описывающие волновые процессы в волноводе. Итак, при расчете волновых процессов в волноводе следует различать длину волны l0 в свободном пространстве, длину волны в волноводе l и критическую длину волны lкр. Соответствующие волновые числа определяются формулами:

- волновое число в свободном пространстве k = ; (189)

- поперечное волновое число xm = = ; (190)

- продольное волновое число k/ = = . (191)

Волновые числа связаны соотношением

= k2 - . (192)

 

 

3.9.3. Прямоугольный металлический волновод

На рис. 3-60 изображен прямоугольный металлический волновод. По ГОСТу размеры волновода обозначают (а´b), где a размер широкой стенки волновода, b - узкой стенки. Виды волн, которые реализуются в волноводе, определяется размерами (а´b), обусловленными числом поперечных стоячих волн (см. рис 3-59). Размеры волноводов, применяемых в различных диапазонах волн, берут в справочниках по волноводной технике. Как правило, внутри волновода находится воздух или вакуум (e =1, m = =1).

 

 
 

 

 


В таких волноводах могут распространяться волны Е- и Н-типа. На практике наибольшее распространение получили волны Н-типа (или ТЕ–типа) – поперечно-электрические волны и, в частности, основной тип волны – волна H10. Волна Н-типа для волновода прямоугольного сечения записывается в виде Hmn, где m, n – индексы, указывающие на количество полуволн вдоль оси x и y соответственно.

Как было уже отмечено, при расчете волнового процесса в волноводе необходимо различать длину волны l0 в свободном пространстве, соответствующей частоте генератора f, длину волны в волноводе l и критическую длину волны lкр. Напомним, критическая длина волны lкр как собственная характеристика волновода – это максимальная длина волны (соответственно, минимальная частота) которая может распространяться в волноводе для данного типа колебаний. Связь между волновыми числами и соответствующими длинами волн выражаются формулами (189), (190), (191), (192).

1. Составляющие векторов E и H бегущей электромагнитной волны в направлении распространения волны – в направлении оси z - обобщенно выражаются уравнениями вида A(к) = (x,y) e-gz+iwt, где g - постоянная распространения.

Дифференцирование любой проекции векторовE и H по координате z умножению проекции на (-g):

= = = . (193)

Аналогично = ; = = . (193*)

 

Подставив уравнения (193) и (193*) в соответствующие уравнения для компонент ротора E и Hв комплексной форме, получим:

1) + = ; 2) =

2015-12-15 567 Обсуждений (0)
Параллельными идеально проводящими поверхностями 0.00 из 5.00 0 оценок









Обсуждение в статье: Параллельными идеально проводящими поверхностями

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Почему агроценоз не является устойчивой экосистемой
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (567)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)