Мегаобучалка Главная | О нас | Обратная связь


Производная и дифференциал функции



2015-12-15 919 Обсуждений (0)
Производная и дифференциал функции 0.00 из 5.00 0 оценок




Производная функции, ее геометрический смысл

 

Определение. Производной функции в точке называется предел, если он существует, отношения приращения функции в точке к приращению аргумента в этой точке, когда последнее стремится к нулю:

 

,

где - приращение аргумента в точке , а - соответствующее этому приращению приращение функции в этой точке.

 

 

у

 

 

P

M

 

0 x

 

Пусть функция определена на некотором промежутке и имеет во внутренней точке этого промежутка конечную производную. Пусть - точка графика функции , соответствующая абсциссе , а - произвольная точка графика функции.

Касательной к кривой в точке называется предельное положение секущей , когда точка стремится к точке по кривой с любой стороны.

Обозначим через угол наклона секущей МР к положительному направлению оси . Тогда . Находим

,

где - угол наклона касательной к графику функции в точке .

Угол между кривыми в их общей точке определяется как угол между касательными, проведенными к этим кривым в их общей точке.

Уравнение касательной к кривой в точке имеет вид:

Уравнение нормали к кривой в точке имеет вид: .

Функция имеющая конечную производную в точке называется дифференцируемой в этой точке.

 

Односторонние производные функции в точке

 

Определение. Правой (левой) производной функции в точке называется правый (левый) предел

при условии, что этот предел существует.

Если функция имеет производную в некоторой точке , то она имеет в этой точке односторонние производные. Однако, обратное утверждение неверно. Во-первых функция может иметь разрыв в точке , а во- вторых, даже если функция непрерывна в точке , она может быть в ней не дифференцируема.

Например: - имеет в точке и левую и правую производную, непрерывна в этой точке, однако, не имеет в ней производной.

Теорема. (Необходимое условие существования производной) Если функция имеет производную в точке , то она непрерывна в этой точке.

Очевидно, что это условие не является достаточным.

 

Основные правила дифференцирования

 

Пусть - функции, дифференцируемые в точке . Тогда:

1)

2)

3) , если v ¹ 0

Эти правила могут быть доказаны на основе теорем о пределах.

 

Производные основных элементарных функций.

 

1) , 9) ,

2) , 10) ,

3) , 11) ,

4) , 12) ,

5) , 13) ,

6) , 14) ,

7) , 15) ,

8) , 16) .

 

Производная сложной функции

 

Теорема.Пусть , причем область значений функции входит в область определения функции .Тогда

Доказательство. Имеем

.

Переходя к пределу в обеих частях при получим:

,

(с учетом того, что если , то , т.к. – непрерывная функция)

Тогда . Теорема доказана.

 



2015-12-15 919 Обсуждений (0)
Производная и дифференциал функции 0.00 из 5.00 0 оценок









Обсуждение в статье: Производная и дифференциал функции

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (919)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)