Теплопроводность однородной пластины
Симметричные условия охлаждения (граничные условия третьего рода) Дано: тонкая пластина, толщиной 2d площадью поверхности F, м2 с коэффициентом теплопроводности l=const, с объемным тепловыделением qv находится в среде с температурой tж=const (рис. 3.1). Задан коэффициент теплоотдачи
Температурное поле пластины описывается дифференциальным уравнением теплопроводности (1.13). Для стационарного режима
Дифференциальное уравнение второго порядка требует два дополнительных условия однозначности для определения констант интегрирования. Такими условиями являются граничное условие третьего рода (заданы tж,
и условие максимума температуры в центре пластины
Система уравнений (3.1) – (3.3) является математической постановкой задачи. Граничные условия на поверхностях пластины одинаковы, тепловые потоки, отводимые с поверхностей, одинаковы поэтому можно рассматривать лишь одну половину пластины, например правую, для которой записано граничное условие (3.2). После интегрирования (3.1) получим
Уравнение (3.5) - общий интеграл уравнения (3.1). Постоянные интегрирования с1 и с2 определяются с помощью граничных условий (3.2) и (3.3). Из уравнения (3.4) с учетом (3.3) получим
Из уравнения (3.4) при х=d имеем
а из (3.5) при х=d
Значения
После подстановки значений с1 и с2 в (3.5) получим уравнение температурного поля t=f(x) при граничных условиях третьего рода
где х – текущая координата. Уравнение (3.6) – симметричная парабола (рис. 3.1). Максимальная температура (tтах) – в центре пластины (х=0), минимальная (tс) – на поверхности пластины (х=d). При этих условиях из (3.6) можно получить расчетные формулы для максимальной температуры и температуры поверхности пластины:
Если в уравнение (3.6) подставить значение tс согласно (3.8), то получим уравнение температурного поля пластины t=f(x) при граничных условиях первого рода
Тепловой поток, рассеиваемый поверхностью F, рассчитывается по формулам:
где V, м3 - объем пластины. Суммарный тепловой поток, рассеиваемый двумя боковыми поверхностями, вдвое больше, т.к. площадь поверхности охлаждения Fохл=2F, тепловыделяющий объем - V, м3.
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1592)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |