Мегаобучалка Главная | О нас | Обратная связь


Неопределённость «бесконечность минус бесконечность»



2015-11-06 6973 Обсуждений (0)
Неопределённость «бесконечность минус бесконечность» 4.20 из 5.00 10 оценок




Популярная неопределённость устраняется тремя распространёнными способами:

– приведением выражения под знаком предела к общему знаменателю;

– умножением/делением на сопряжённое выражение;

– преобразованием логарифмов.

Рассмотрим первый случай, о котором я ещё не рассказывал:

Пример 9

Вычислить предел

В данном пределе имеет место неопределённость , и общий алгоритм решения незамысловат: необходимо привести выражение к общему знаменателю, а затем попытаться что-нибудь сократить:

(1) Раскладываем знаменатели на множители: в первом знаменателе выносим «икс» за скобки, во втором знаменателе используем формулу разности кубов . Данный шаг можно было пропустить, но этим пришлось бы заниматься потом, и, на мой взгляд, разложение на множители удобнее провести сразу же.

(2) Приводим выражение к общему знаменателю.

(3) Приводим подобные слагаемые в числителе. Неопределённость трансформировалась в неопределённость , которая стандартно раскрывается разложением числителя и знаменателя на множители.

(4) Знаменатель уже разложен на множители. Раскладываем на множители числитель, в данном случае использована формула .

(5) Сокращаем числитель и знаменатель на , устраняя неопределённость.

Как видите, новизны-то особой и нет.

Аналогичное задание для самостоятельного решения:

Пример 10

Вычислить предел

Решение и ответ в конце урока

Второй вид пределов с неопределённостью неопределённость представляет собой разность, в которой присутствуют два или один корень:

Пример 11

Вычислить предел

Каноничный образец. Метод решения подробно разобран на уроке Пределы. Примеры решений. Необходимо умножить и разделить на сопряженное выражение, чтобы потом воспользоваться формулой

Умножим и разделим на сопряженное выражение:

Неопределённость превратилась в неопределённость . Узнаёте? Такие семечки мы грызли в первом разделе данного урока.

Числитель и знаменатель одного порядка роста, а значит, предел равен конечному числу. Разделим числитель и знаменатель на :

Не редкость, когда в разности всего один корень, но это не меняет алгоритма решения:

Пример 12

Вычислить предел

Пример 13

Вычислить предел

Это пара коротких примеров для самостоятельного решения.

Следует отметить, что пределы рассмотренного типа не обязаны равняться конечному числу, вполне может получиться и бесконечность, причём, как «плюс», так и «минус». Кстати, в примере №13 можно посмотреть на порядок роста членов, чтобы сразу выяснить ответ ;-)

Иногда на практике встречаются пределы-«обманки», в которых неопределённости «бесконечность минус бесконечность» нет вообще, вот простейший пример:

Таким образом, будьте предельно внимательны: перед решением предела необходимо убедиться, что неопределённость действительно есть!

В заключительной части статьи вернёмся к незаслуженно забытым замечательным пределам, где рассмотрим, в том числе, третий тип пределов с неопределённостью .

 



2015-11-06 6973 Обсуждений (0)
Неопределённость «бесконечность минус бесконечность» 4.20 из 5.00 10 оценок









Обсуждение в статье: Неопределённость «бесконечность минус бесконечность»

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (6973)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)