Мегаобучалка Главная | О нас | Обратная связь

Метод замены переменной в пределе





Весьма ходовой приём решения. Метод замены переменной применяют чаще всего для того, чтобы свести решение к первому замечательному пределу, намного реже – к другому замечательному пределу. Рассмотрим пару типовых образцов:

Пример 14

Найти предел

Решаем:

В пределе находится арктангенс, от которого хорошо бы избавиться. Логично и очень удобно превратить «арк» в одну единственную букву. Проведём замену переменной: .

Теперь в пределе нужно выразить всё остальное через «тэ».

Во-первых, выясним, куда будет стремиться новая переменная «тэ»:
Если , то , иными словами, новоиспеченная переменная тоже будет стремиться к нулю:

Осталось в знаменателе выразить «икс» через «тэ». Для этого на обе части равенства «навешиваем» тангенсы:

В правой части две взаимно обратные функции уничтожаются:
, откуда:

Взмахи волшебной палочки закончены, остальное просто:

Используемые формулы и приёмы решения завершающего этапа очень подробно разобраны в первой части урока Замечательные пределы.

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса втригонометрической таблице. Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(3) Используем формулу приведения , формулы приведения также можно найти в тригонометрических таблицах.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .



Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения, приходится использовать самые разные тригонометрические формулы, а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

 





Читайте также:


Рекомендуемые страницы:


Читайте также:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...

©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3273)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.004 сек.)