Нелинейное программирование
Источники нелинейности относятся в основном к одной из двух категорий: 1) Реально существующие и эмпирически наблюдаемые нелинейные соотношения, например: непропорциональные зависимости между объемом производства и затратами; между количеством используемого в производстве компонента и некоторыми показателями качества готовой продукции; между затратами сырья и физическими параметрами (давление, температура и т.п.) соответствующего производственного процесса; между выручкой и объемом реализации и др.; 2) Установленные руководством правила поведения или задаваемые зависимости, например: формулы или правила расчета с потребителями энергии или других видов услуг; эвристические правила определения страховых уровней запаса продукции; гипотезы о характере вероятностного распределения рассматриваемых в модели случайных величин; различного рода договорные условия взаимодействия между партнерами по бизнесу и др. Решать линейные задачи значительно проще, чем нелинейные, и если линейная модель обеспечивает адекватность реальным ситуациям, то ее и следует использовать. В практике экономического управления модели линейного программирования успешно применялись даже в условиях нелинейности. В одних случаях нелинейность несущественна и ею можно пренебречь, в других — производилась линеаризация нелинейных соотношений или применялись специальные приемы, например, строились линейные аппроксимационные модели, благодаря чему достигалась требуемая адекватность. Тем не менее, имеется большое число ситуаций, где нелинейность является существенной и ее нужно учитывать в явном виде. В общем виде задача НЛП описывается с помощью следующей моделинелинейного программирования:
где х = (x1, х2, ..., х n) — вектор переменных задачи. Задача (1)—(3) называется задачей нелинейного программирования в стандартной форме на максимум. Может быть сформулирована также задача НЛП на минимум. Вектор х = (x1, х2, ..., х n), компоненты х j которого удовлетворяют ограничениям (2) и (3), называется допустимым решением или допустимым планом задачиНЛП. Совокупность всех допустимых планов называется множеством допустимых планов.Допустимое решение задачи НЛП, на котором целевая функция (1) достигает максимального значения, называется оптимальным решением задачи НЛП. Возможное местонахождение максимального значения функции F(x) при наличии ограничений (2) и (3) определяется следующим общим принципом. Максимальное значение F(x), если оно существует, может достигаться в одной или более точках, которые могут принадлежать следующим множествам: — внутренняя точка множества допустимых планов, в которой все первые частные производные — точка границы множества допустимых планов}; — точка множества допустимых планов, в которой функция F(x) не дифференцируема}. В отличие от задач линейного программирования, любая из которых может быть решена симплекс-методом, не существует одного или нескольких алгоритмов, эффективных для решения любых нелинейных задач. Какой-то алгоритм может оказаться чрезвычайно эффективным для решения задач одного типа и неудачным для задач другого типа. Эффективность алгоритма может даже существенно зависеть от постановки задачи, например от изменения масштабов тех или иных переменных. Поэтому алгоритмы разрабатываются для каждого класса (типа) задач. Программы, ориентированные на решение определенного класса задач, как правило, не гарантируют правильность решения любых задач данного класса, и оптимальность решения рекомендуется проверять в каждом конкретном случае.
Популярное: Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (248)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |