Условие максимума и минимума интерференции
Как было уже показано, для наблюдения интерференции света необходимо иметь когерентные световые пучки, для чего применяются различные приёмы. В опыте Юнга когерентные пучки получали разделением и последующим сведением световых лучей, исходящих из одного и того же источника (метод деления волнового фронта).
Рис. 8.2 Свет от источника S, прошедший через узкую щель в экране А, падет на экран В с двумя щелями S1 и S2, расположенными достаточно близко друг к другу на расстоянии d. Эти щели являются когерентными источниками света. Интерференция наблюдается в области, в которой перекрываются волны от этих источников (поле интерференции). На экране Э мы видим чередование полос с максимумом и минимумом интенсивности света. Расстояние между двумя соседними максимумами называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами – шириной интерференционной полосы. Т.к. Этот опыт показывает, что интерференционная картина, создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос. Главный максимум, соответствующий m=0 , проходит через точку О. Вверх и вниз от него располагаются максимумы (минимумы) первого ( m=1 ), второго ( m=2 ) порядков и т. д. Из перечисленных формул видно, что ширина интерференционной полосы и расстояние между ними зависят от длины волны λ. Только в центре картины при x=0 совпадут максимумы всех волн. По мере удаления от центра максимумы разных цветов смещаются друг относительно друга все больше и больше. Это приводит, при наблюдении в белом свете, ко все большему размытию интерференционных полос. Интерференционная картина будет окрашенной, но нечеткой (смазанной). Измерив За промежуток времени где Таким образом, длина когерентности есть расстояние, при прохождении которого две или несколько волн утрачивают когерентность. Отсюда следует, что наблюдение интерференции света возможно лишь при оптических разностях хода, которые меньше длины когерентности для используемого источника света. Чем ближе волна к монохроматической, тем меньше ширина
Прошедший через узкую длинную щель S свет, вследствие дифракции образует расходящийся пучок, который падает на второй экран B с двумя, параллельными между собой узкими щелями S1 и S2, расположенными близко друг к другу на равных расстояниях от S. Эти щели действуют как вторичные синфазные источники, и исходящие от них волны, перекрываясь, создают интерференционную картину, наблюдаемую на удаленном экране C. Расстояние между соседними полосами равно:
Источником служит узкая ярко освещенная щель S, параллельная ребру между зеркалами. Отраженные от зеркал пучки падают на экран, и в той области, где они перекрываются (поле интерференции), возникает интерференционная картина. От прямого попадания лучей от источника S экран защищен ширмой
В данном интерференционном опыте, также предложенном Френелем, для разделения исходной световой волны на две используют призму с углом при вершине, близким к 180°. Источником света служит ярко освещенная узкая щель S, параллельная преломляющему ребру бипризмы (рис. 8.5). Можно считать, что здесь образуются два близких мнимых изображения S1 и S2 источника S, так как каждая половина бипризмы отклоняет лучи на небольшой угол Билинза Бийе Аналогичное бипризме Френеля устройство, в котором роль когерентных источников играют действительные изображения ярко освещенной щели, получается, если собирающую линзу разрезать по диаметру и половинки немного раздвинуть (рис. 8.6).
Интерференцию света по методу деления амплитуды во многих отношениях наблюдать проще, чем в опытах с делением волнового фронта. Один из способов, использующих такой метод, – опыт Поля. В опыте Поля свет от источника S отражается двумя поверхностями тонкой прозрачной плоскопараллельной пластинки В любую точку P, находящуюся с той же стороны от пластинки, что и источник, приходят два луча. Эти лучи образуют интерференционную картину.
Популярное: Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (819)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |