Мегаобучалка Главная | О нас | Обратная связь


Естественный и поляризованный свет. Поляризация при отражении и преломлении. Двойное преломление света. Закон Малюса. Интерференция поляризованного света.



2019-07-03 319 Обсуждений (0)
Естественный и поляризованный свет. Поляризация при отражении и преломлении. Двойное преломление света. Закон Малюса. Интерференция поляризованного света. 0.00 из 5.00 0 оценок




Как правило, излучение естественных источников представляет собой пример электромагнитных волн со всевозможными равновероятностными ориентациями вектора , т.е. с неопределённым состоянием поляризации. Такой свет называют неполяризованным илиестественным(рис. 11.2, а).

Свет с преимущественным (но не исключительным) направлением колебаний вектора называют частично поляризованным светом (рис. 11.2, б).

в природе существует обширный класс электромагнитных волн, в которых колебания электрического и магнитного полей совершаются в строго определённых направлениях. Такое свойство определяет состояниеполяризации электромагнитной волны. Если вектор напряженности электрического поля электромагнитной волны колеблется вдоль некоторого направления в пространстве, говорят о линейной поляризациирассматриваемой электромагнитной волны (рис. 11.2, в). Электромагнитная волна в этом случае называется полностью поляризованной.

из уравнений Максвелла следует существование полностью поляризованных электромагнитных волн, у которых по мере распространения волны векторы напряжённости электрического и магнитного полей изменяются таким образом, что траектория их движения в плоскости, поперечной направлению распространения волны, представляет собой эллипс или окружность. В этом случае говорят, соответственно, обэллиптической,или круговой, поляризации электромагнитной волны (рис. 11.3, а, б).

Устройства, позволяющие получать линейно поляризованный свет, называют поляризаторами. Когда те же самые приборы используют для анализа поляризации света, их называют анализаторами. Через такие устройства проходит только та часть волны, у которой вектор колеблется в определенном направлении. Это направление называют главной плоскостью поляризатора (анализатора).

Пусть естественный свет падает на кристалл поляризатора Р (рис. 11.5).

После прохождения поляризатора, он будет линейно поляризован в направлении . Интенсивность света при этом уменьшится на половину. Это объясняется тем, что при случайных ориентациях вектора все направления равновероятны.

Если вращать поляризатор вокруг светового луча, то никаких особых изменений не произойдет. Если же на пути луча поставить еще и второй кристалл – анализатор A, то интенсивность света будет изменяться в зависимости от того, как ориентированы друг относительно друга обе пластины. Интенсивность света будет максимальна, если оси обоих кристаллов параллельны, и равна нулю, если оси перпендикулярны друг другу.

Все это можно объяснить следующим образом:

световые волны поперечны, однако в естественном свете нет преимущественного направления колебаний;

·кристалл поляризатора пропускает лишь те волны, вектор которых имеет составляющую, параллельную оси кристалла (именно поэтому поляризатор ослабляет свет в два раза);

кристалл анализатора, в свою очередь, пропускает свет, когда его ось параллельна оси поляризатора.

Поляризованный свет можно получить, используя отражение или преломление света от диэлектрических изотропных сред (например, от стекла). Если угол падения света на границу раздела двух диэлектриков отличен от нуля, отраженный и преломленный лучи оказываются частично поляризованными. В отраженном луче преобладают колебания, перпендикулярные плоскости падения (на рис. 5.9 эти колебания обозначены точками), в преломленном луче – колебания, параллельные плоскости падения (на рис. 5.9 они изображены двусторонними стрелками).

Степень поляризации того и другого луча зависит от угла падения луча. У каждой пары прозрачных сред существует такой угол падения, при котором отраженный свет становится полностью плоскополяризованным, а преломленный луч остается частично поляризованным, но степень его поляризации при этом угле максимальна (рис. 5.10). Этот угол называется углом Бpюстеpа. Угол Брюстера определяется из условия

,

где  – относительный показатель преломления двух сред. Можно показать, что при падении волны под углом Брюстера отраженный и преломленный лучи взаимно перпендикулярны.

Таким образом, пластинка диэлектрика сортирует лучи естественного света, отражая преимущественно лучи с одним направлением колебаний и пропуская перпендикулярные колебания.

Закон Брюстера может быть использован для изготовления поляризатора. В этом случае используют не отраженный, а преломленный луч, хотя он и не полностью поляризован. Чтобы получить высокую степень поляризации преломленного луча, его пропускают через стопу стеклянных пластинок: после прохождения каждой следующей пластинки стопы степень поляризации преломленного луча увеличивается. При достаточно большом числе пластинок проходящий через эту систему свет будет практически полностью плоскополяризованным, а интенсивность прошедшего света в отсутствие поглощения будет равна половине интенсивности падающего на стопу естественного света.

Основными источниками поляризованного света в окружающей нас среде являются такие яркие горизонтальные поверхности как водная гладь, мокрый асфальт (рис. 5.11а), снег, лед.

Закон Малюса.

Направим естественный свет на двеодинаковые прямоугольные пластинки 1 и 2 из кристалла турмалина со стороны пластины 1. Вторую пластинку поворачиваем вокруг луча света. Можно обнаружить, что при некоторой взаимной ориентации пластинок 1 и 2 интенсивность света, прошедшего через систему, максимальна. При повороте 2-й пластинки на 90° свет через пластинки не проходит. При дальнейшем повороте опять наблюдается прохождение света и так далее.

Рассмотрим идеальный поляризатор, преобразующий свет в линейно поляризованный. Этот поляризатор свободно пропускает колебания светового вектора, параллельные плоскости, называемой плоскостью пропускания поляризатора. Колебания же, перпендикулярные к этой плоскости, задерживаются им полностью.

Пусть на анализатор падает линейно поляризованный свет, вектор которого составляет угол α с плоскостью пропускания РР

Анализатор пропускает только ту составляющую вектора , которая параллельна плоскости пропускания РР, то есть . Так как интенсивность пропорциональна квадрату модуля светового вектора (I~E2), то интенсивность прошедшего света I=I0 cos2α, где I, I0 - интенсивности прошедшего и падающего поляризованного света. Это соотношение называется законом Малюса. С волновой точки зрения закон Малюса представляет собой следствие теоремы разложения векторов и утверждения, что интенсивность света пропорциональна квадрату амплитуды световой волны.

Интерференция поляризованного света:

Явления интерференции поляризованных лучей исследовались в классических опытах Френеля и Арго (1816 г.), доказавших поперечность световых колебаний. Суть их в зависимости результата интерференции от угла между плоскостями световых колебаний: полосы наиболее контрастны при параллельных плоскостях и исчезают, если волны поляризованы ортогонально. Трудность получения интерференции поляризованных волн состоит в том, что при наложении двух когерентных лучей, поляризованных во взаимно перпендикулярных направлениях, никакой интерференционной картины с максимумами и минимумами интенсивности получиться не может. Интерференция возникает только в том случае, если колебания во взаимодействующих лучах совершаются вдоль одного и того же направления. Колебания в двух лучах, первоначально поляризованных во взаимно перпендикулярных направлениях, можно свести в одну плоскость, пропустив эти лучи через поляризующую кристаллическую пластинку.

Рассмотрим схему получения интерференции поляризованных лучей (рис. 11.13).

 Прошедшее через поляризатор Р излучение точечного источника S попадает на полуволновую кристаллическую пластинку Q, которая позволяет изменять угол между плоскостями поляризации интерферирующих лучей: ее поворот на угол α поворачивает вектор на 2α. Если наблюдать интерференционные полосы через анализатор А, то при его повороте на π/2 картина, наблюдаемая на экране Э, инвертируется: из-за дополнительной разности фаз π темные полосы становятся светлыми и наоборот. Анализатор здесь необходим также для того, чтобы свести колебания двух различно поляризованных лучей в одну плоскость.

при прохождении поляризованного света через кристаллическую пластинку разность хода между двумя компонентами поляризации зависит от толщины пластинки, среднего угла преломления и разности показателей и . Очевидно, что возникающая при этом разность фаз

различна для разных длин волн, и тем самым интерференционная картина оказывается окрашенной. Для плоскопараллельных пластинок наблюдаются полосы равного наклона, а для тонких клиновидных пластинок -полосы равной толщины.

Приведенная формула позволяет для любой фазовой пластинки рассчитать интенсивность на выходе при скрещенных поляризаторе и анализаторе.



2019-07-03 319 Обсуждений (0)
Естественный и поляризованный свет. Поляризация при отражении и преломлении. Двойное преломление света. Закон Малюса. Интерференция поляризованного света. 0.00 из 5.00 0 оценок









Обсуждение в статье: Естественный и поляризованный свет. Поляризация при отражении и преломлении. Двойное преломление света. Закон Малюса. Интерференция поляризованного света.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (319)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)