Мегаобучалка Главная | О нас | Обратная связь


Электромагнитные волны (ЭВМ). Генерация ЭВМ. Дифференциальное уравнение ЭВМ. Экспериментальное исследование ЭВМ. Энергия и импульс ЭВМ.



2019-07-03 1278 Обсуждений (0)
Электромагнитные волны (ЭВМ). Генерация ЭВМ. Дифференциальное уравнение ЭВМ. Экспериментальное исследование ЭВМ. Энергия и импульс ЭВМ. 0.00 из 5.00 0 оценок




Определение волны. Волна (волновой процесс) - процесс распространения колебаний в сплошной среде. При распростаранении волны частицы среды не движутся вместе с волной, а колеблются около своих положений равновесия. Вместе с волной от частицы к частице среды передаются лишь состояния колебательного движения и его энергия. Поэтому основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества (10)*

Электромагни́тные во́лны, электромагни́тное излуче́ние — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Среди электромагнитных полей вообще, порождённых электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников — движущихся зарядов, затухая наиболее медленно с расстоянием.

Электромагнитное излучение способно распространяться практически во всех средах. В вакууме (пространстве, свободном от вещества и тел, поглощающих или испускающих электромагнитные волны) электромагнитное излучение распространяется без затуханий на сколь угодно большие расстояния, но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом своё поведение). Основными характеристиками электромагнитного излучения принято считать частоту, длину волны и поляризацию.

Длина волны прямо связана с частотой через (групповую) скорость распространения излучения. Групповая скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше. Фазовая скорость электромагнитного излучения в вакууме также равна скорости света, в различных средах она может быть как меньше, так и больше скорости света[1]. Некоторые особенности электромагнитных волн c точки зрения теории колебаний и понятий электродинамики:

наличие трёх взаимно перпендикулярных (в вакууме) векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.

электромагнитные волны — это поперечные волны, в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том числе и через вакуум. Из теории Максвелла следует, что изменяющееся электрическое поле порождает в пустом пространстве магнитное поле. Изменяющееся магнитное поле приводит, в свою очередь, к появлению изменяющегося электрического поля и т.д. Анализируя свои уравнения, Максвелл пришел к заключению, что конечным итогом подобной связи изменяющихся полей будет появление волны, которая содержит электрическое и магнитное поля и способна распространяться в пустом пространстве.

Впервые электромагнитные волны были обнаружены в 1887 г. Генрихом Герцем, который в качестве источника электромагнитных колебаний использовал колебательный контур.

Рис. 6.1

В колебательном контуре, образованном конденсатором С и катушкой L (рис. 6.1, а), электрическое поле сосредоточено в зазоре между обкладками, а магнитное – внутри катушки.

В окружающем конденсатор и катушку пространстве поля практически равны нулю, поэтому заметного излучения электромагнитных волн не происходит. Для того чтобы контур излучал волны, необходимо увеличить расстояние между обкладками конденсатора и между витками катушки. В пределе мы придем к прибору, названному впоследствии вибратором Герца. В процессе видоизменений, изображенных на рис. 6.1, б, в, сильно уменьшается емкость и индуктивность контура, что также выгодно, так как приводит к увеличению частоты колебаний, а следовательно к уменьшению длины волны. С волнами меньшей длины легче экспериментировать. В своих исследованиях Герц достиг частот порядка 108 Гц и получил волны, длина которых составляла от 10 до 0,6 м.

Вибратор Герца имел несколько модификаций. В одной из них (рис. 6.2) он состоял из двух одинаковых металлических стержней V – V, разделенных регулируемым искровым промежутком R и соединенных через дроссели D с индуктором - источником высокого напряжения.

Когда напряжение на искровом промежутке достигало пробойного значения, он пробивался электрической искрой, замыкающей обе половины вибратора. В вибраторе возникали затухающие электрические колебания высокой частоты. Максимальной интенсивностью обладали колебания с пучностью тока посередине вибратора и с длиной волны, равной примерно удвоенному расстоянию между концами вибратора (полуволновой вибратор). Уходу колебаний в индуктор препятствовали дроссели, соединяющие элементы вибратора с индуктором.

Рис. 6.2

Для обнаружения электромагнитных волн Герц использовал резонаторы в виде проволочной рамки и иных форм. Наиболее простым являлся резонатор А – А (рис. 6.2), по форме повторяющий излучающий вибратор, а поэтому имеющий те же собственные частоты колебаний.

Когда электромагнитная волна достигает резонатора, она возбуждает в нем токи. Появление этих токов сопровождается проскакиванием искры в маленьком зазоре в центре резонатора или возбуждением свечения в небольшой газоразрядной трубке Т, подключенной к обеим половинкам резонатора.

ЭМВ распространяются в пространстве, удаляясь от вибратора во все стороны, а не только вправо, как показано на рис. 6.3.

 

Рис. 6.3

Рисунок 6.3, наглядно показывающий способ распространения ЭМВ, помогпет сделать несколько выводов.

Во-первых, в любой точке векторы напряженности электрического Е вектори магнитного полей взаимно перпендикулярны и перпендикулярны направлению распространения  .

Во-вторых, поля изменяют свое направление в пространстве: в одних точках вектор Н вектор направлен к плоскости страницы, в других – от нее; аналогично ведет себя и вектор Е вектор .

В-третьих, электрическое и магнитное поля находятся в фазе, т.е. они достигают максимума и обращаются в нуль в одних и тех же точках.

Если ЭДС генератора изменяется по синусоидальному закону, то и напряженность электрического поля и магнитного поля будет изменяться по синусоидальному закону. Строго говоря, это справедливо в точках, достаточно удаленных от источника (в волновой зоне, когда  ).

Электромагнитные волны представляют собой поперечные волны и аналогичны другим типам волн. Однако в ЭМВ происходят колебания полей, а не вещества, как в случае волн на воде или в натянутом шнуре.

Таким образом, ЭВМ генерируются колеблющимися, т.е. движущимися с ускорением, электрическими зарядами. Справедливо и такое утверждение: движущийся с ускорением электрический заряд испускает электромагнитные волны.

 Из уравнений Максвелла следует также, что в электромагнитной волне векторы  и  всегда колеблются в одинаковых фазах, причем мгновенные значения Е и H в любой точке связаны соотношением (6.2.1)

Следовательно E и H одновременно достигают максимума, одновременно обращаются в нуль и т. д.

От уравнений (6.2.1) можно перейти к уравнениям  и ,

где, y и z при E и H подчеркивают лишь то, что векторы  и  направлены вдоль взаимно перпендикулярных осей y и z.

Уравнениям (6.2.3) удовлетворяют, в частности, плоские монохроматические электромагнитные волны (ЭМВ одной строго определенной частоты), описываемые уравнениями и где  и  – соответственно, амплитуды напряженностей электрического и магнитного полей волны, ω – круговая частота,  – волновое число, φ – начальная фаза колебаний в точках с координатой  . В уравнениях (6.2.3) начальные фазы одинаковы, т.е. колебания электрического и магнитного векторов в ЭМВ происходят в одинаковых фазах.

Из всего вышеизложенного можно сделать следующие заключения:

векторы  ,  и  взаимно перпендикулярны, так как  и  направлены одинаково; электромагнитная волна является поперечной; электрическая и магнитная составляющие распространяются в одном направлении; векторы  и  колеблются в одинаковых фазах.

6.5 а, б

 Для исследования свойств электромагнитных волн Герц использовал металлические параболические зеркала и большую призму из твердой смолы - асфальта с основанием 1,2 м и высотой 1,5 м с преломляющим углом 30° (рис. 6.5 а).

В своих опытах Герц установил полную аналогию электромагнитных и световых волн. Было показано, что для электромагнитных волн справедлив закон отражения и преломления. Отражающими поверхностями для электромагнитных волн служили металлические листы, а закон Снелла был проверен на призмах из диэлектриков. Кроме того, опыты Герца подтвердили соотношение  , следующее из теории Максвелла.

Поместив излучающий вибратор в фокусе вогнутого зеркала, Герц получил направленную плоскую волну. На ее пути он расположил плоское зеркало и получил таким образом стоячую волну. Измерив расстояние между узлами и пучностями волны, Герц нашел длину волны λ. Произведение λ на частоту колебаний вибратора ν дало скорость ЭМВ, которая оказалась близкой к скорости света с. Располагая на пути волн решетку из параллельных друг другу медных проволок, Герц обнаружил, что при вращении решетки вокруг луча интенсивность волн, прошедших сквозь решетку, сильно изменяется. Когда проволоки проходили перпендикулярно к вектору  , волна проникала сквозь решетку без помех. При расположении проволоки параллельно  вектору  волна сквозь решетку не проходила. Таким образом, была подтверждена поперечность ЭМВ.

Отметим также, что в ходе исследований свойств электромагнитных волн Герц сделал еще одно важнейшее открытие - фотоэлектрический эффект (вырывание электрических зарядов с поверхности металлов под действием света).

Опыты Герца были продолжены П. Н. Лебедевым, который в 1894 г. получил ЭМВ длиной 4–6 мм и исследовал прохождение их в кристаллах. При этом было обнаружено двойное преломление волн.

Дальнейшее развитие методики эксперимента позволило в 1923 г. А.А. Глаголевой-Аркадьевой сконструировать массовый излучатель, в котором короткие ЭМВ, возбужденные колебаниями электрических зарядов в атомах и молекулах, генерировались с помощью искр между металлическими опилками, взвешенными в масле. Так были получены волны длиной λ от 50 мм до 80 мкм. Тем самым было доказано существование волн, перекрывающих интервал между радиоволнами и инфракрасным излучением. Позднее были получены волны в очень широком диапазоне частот.

Существование давления ЭМВ приводит к выводу о том, что электромагнитному полю присущ механический импульс.

Выражая импульс как (поле в вакууме распространяется со скоростью света с), получим , отсюда . Это соотношение между массой и энергией ЭМП является универсальным законом природы, справедливым для любых тел независимо от их внутреннего строения.

Импульс электромагнитного поля, связанного с движущейся частицей, – электромагнитный импульс – оказался пропорциональным скорости частицы υ, что имеет место и в выражении для обычного импульса mυ, где m – инертная масса заряженной частицы. Поэтому коэффициент пропорциональности в полученном выражении для импульса  называют электромагнитной массой:

  , (6.4.6)  

где е – заряд движущейся частицы, а – ее радиус.



2019-07-03 1278 Обсуждений (0)
Электромагнитные волны (ЭВМ). Генерация ЭВМ. Дифференциальное уравнение ЭВМ. Экспериментальное исследование ЭВМ. Энергия и импульс ЭВМ. 0.00 из 5.00 0 оценок









Обсуждение в статье: Электромагнитные волны (ЭВМ). Генерация ЭВМ. Дифференциальное уравнение ЭВМ. Экспериментальное исследование ЭВМ. Энергия и импульс ЭВМ.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1278)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)