Мегаобучалка Главная | О нас | Обратная связь


Математическая формализация задачи



2019-12-29 249 Обсуждений (0)
Математическая формализация задачи 0.00 из 5.00 0 оценок




В дальнейшем все функции времени предполагаются, если не оговорено противное, продолженными нулем на интервал (t < 0), а функции от r – на интервал (z < 0). Аргументы функции (или часть их) опускаются при записи, если это не приводит к недоразумению. Запись производной просто штрихом (или точкой) означает, что она взята по всему аргументу функции, а не по какой-либо его составляющей.

Задача, поставленная в предыдущем пункте, требует предварительного анализа, например, на предмет сокращения числа входящих в основные уравнения параметров – то есть, как минимум, приведения их к безразмерному виду. Проводя эту стандартную ( t= tτ, r= rρ, p= pπ, f = f ̃φ(τ, ρ, π), F = F̃Φ(τ, ρ, π), E(t, r) = EΕ(τ, ρ), J = JJ(τ, ρ), Sext = Qext/Q) операцию, видим, что между масштабными – взволнованными – коэффициентами должны иметь место стандартные же соотношения, дабы безразмерные уравнения не отличались по своей структуре от своих стартовых размерных аналогов. Таковыми являются: связь скорости и импульса (классическая или релятивистская); r = vt, причем, естественнее всегда брать c – за масштаб скоростей, а из t̃ и r̃ выбирать только одну.

В результате приходим к следующей системе соотношений, приводящих исходную систему к полностью безразмерному виду: один из параметров L = r̃, или T = t̃ является свободным, L = cT, P = p̃ = m0v0. Функции, входящие в систему, имеют своими масштабными коэффициентами следующие величины: Q̃ = 2N/(LTP), f ̃ = 2N/(LP), J̃= – |e|N/T, Ẽ = 4π|e|N, а единственный параметр, остающейся сомножителем перед Ε, – ε можно выразить как через начальные данные: ε = 4πreLN, так и через широко используемые (ωплаз)2 = 4πrec2n – плазменную частоту и νист = 1/T – частоту источника: ε = υ0(ωплаз/νист)2.

Приведенная таким образом к безразмерному виду исходная система приобретает вид:

 

           (1)

                                   (2)

 

Первой задачей анализа системы (1-2) будет получение явных формул для путём разложения его в ряд по степеням ε, что сведёт дальнейшее решение уравнения (1) к решению классического уравнения первого порядка.

 


3.4 Алгоритм разложения решения системы по параметру ε

 

Далее, на первом этапе исследования, при получении формул для E(t, z), нам потребуются производные всех порядков от временной компоненты источника F(t). Считаем, что она является действительной аналитической функцией. Зависимость v = v(p) полагаем аналитической по тем же причинам: как классическая, так и квантовая её модели, разумеется, этим свойством обладают, а для построения решения удобнее рассматривать сразу общий случай υ = υ(π) произвольного диффеоморфизма луча π > 0 на луч υ > 0 либо на интервал 0 < υ < υ0.

Поиск начального приближения  уравнения (1) приводит к формулам:

 

 

Далее, не обговаривая специально, удобно придерживаться следующих обозначений: χ = τ – ζ/υ, χ0 = τ – ζ/υ0, τ – (ζ – υ(τ – τ̃))/υ0 = χ̃0, χ̃ = χ.

Пусть . Разложив по степеням ε произведение εE φ’ и приравнивая, друг другу коэффициенты при всех последовательных степенях, получаем, как обычно, бесконечную серию уравнений, зацепленных каждое только заодно другое своими правыми частями – последовательными источниками частиц, испытавших данное число взаимодействий (соударений). Начальное уравнение цепочки (с S0 = Sext для φ0) уже выписано. Основным для дальнейшего будет то, что левая часть у всех последующих уравнений одинакова. Правые части их имеют следующий вид: . Тождественность операторов , порождающих все уравнения, позволяет следующим образом записать их решения φn, в операторной форме: , где , а  – это оператор сдвига по характеристике (невозмущённого) уравнения переноса: ζ → ζ – υ(τ – τn+1). Далее Εm – это оператор умножения на соответствующую функцию, а ; таким образом в развёрнутой записи имеем соотношение . В последней формуле дифференцирования по dπ отмеченного υ = υ(π) НЕ производится.

На этом пути получаются весьма громоздкие явные выражения для поправок φn при малых n .

Из них для J1(τ, χ0) и Ε1(τ, χ0) получаются весьма простые выражения: Подчеркнем, что простота полученных формул есть следствие того, что для данной задачи оператор обращения уравнений Максвелла  – это просто интегрирование по dτ от 0 до τ. В результате и все поправки высших порядков выразятся как полиномы от τ с коэффициентами, зависящими только от Ε0(χ0) и её производных. Формула для Ε1(τ,χ0) уже выписана,

 

Ε2(χ0)= , а Ε3(χ0)=

 

Далее естественно было предположить, что и общая формула для поправки к Ε(τ,χ0) порядка n будет иметь аналогичный вид:

 

Εn(τ,χ0) = ,

 

где  – полином степени k от , на что указывает показатель степени υ0 в знаменателях его коэффициентов. То, что получатся именно полиномы, а не мономы, как при малых n, угадывается при анализе характера упрощений в полученных формулах при переходе от функции распределения к току электронов; уже при n = 4 в коэффициент при , войдёт сумма A + B  с наперед неизвестными значениями A и B.

 



2019-12-29 249 Обсуждений (0)
Математическая формализация задачи 0.00 из 5.00 0 оценок









Обсуждение в статье: Математическая формализация задачи

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (249)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)