Мегаобучалка Главная | О нас | Обратная связь


Разработка математической модели программного комплекса для моделирования динамических систем



2020-02-03 197 Обсуждений (0)
Разработка математической модели программного комплекса для моделирования динамических систем 0.00 из 5.00 0 оценок




 

Итак, как мы условились выше, математическая модель динамической системы будет представлять собой систему дифференциальных уравнений, задача программного комплекса – обеспечить от пользователя ввод данных о системе, составить систему дифференциальных уравнений и решить ее, выдать пользователю результаты моделирования в виде графиков, отчётов. Мы будем рассматривать колебательную систему с одной степенью свободы. Данную систему легче всего представлять в виде графа, где узлы графа – массы , рёбра графа – связи. Проведем классификацию элементов типа «масса» и «связь». В основу классификационных признаков элементов «масса» были положены: тип распределения массы по объему и способность перемещаться (рисунок 2.1).

 

- Узел «ИЛИ» - Узел «И»

Рисунок 2.1 – «И-ИЛИ» дерево элементов типа «масса»

 

При классификации элементов типа «связь» рассматривали характер зависимости силы (функциональный, интегральный, дифференциальный), вид (линейность) зависимости и влияние связи на энергию системы (рисунок 2.2).


Рисунок 2.2 – «И-ИЛИ» дерево элементов типа «связь»

 

Математически, граф представлен множеством вершин (масс) и множеством рёбер (связей) [32]. Численно граф может быть представлен матрицей инцидентности, но так хранить данные неудобно, так как за каждым элементом закреплено большое количество информации. Поэтому граф будет представлен массивом вершин и массивом рёбер. Каждое ребро будет указывать на вершины, которые оно соединяет.

Решать систему будем численным методом, осталось только выбрать метод для решения системы уравнений

Метод Эйлера.

Метод Эйлера является простейшим одношаговым методом решения задачи Коши.

Допустим, нам известна точка (xi,yi) на искомой кривой (рисунок 2.3).

 

Рисунок 2.3 – Графическая интерпретация метода Эйлера

 

Тогда можно провести прямую линию с тангенсом угла наклона yi’=f(xi yi), которая пройдёт через точку (xi yi)[34]. Следующей точкой решения можно считать ту, где прямая L пересекает ординату, проведённую через точку . Уравнение прямой L имеет вид y=yi + y’I(x-xi). Поскольку  и , то имеем

 

.(2.1).

 

Формула (7) описывает метод Эйлера. Этот метод имеет 1-й порядок точности.

Исправленный метод Эйлера.

Возьмём значение правой части в схеме (2.1) равным среднему арифметическому между  и , то есть

 

.

 будем считать по формуле (2.1):

.

 

Подставляя это значение в формулу для получим:

 

 (2.2)

 

Метод имеет 2 – й порядок точности.

Метод Рунге – Кутта.

Метод описывается системой пяти соотношений:

 

где


Метод имеет 4-й порядок точности.

Вышеописанные методы являются методами с постоянным шагом, кроме этих методов существует ряд методов с переменным шагом: методы с автоматическим шагом и методы прогноза и коррекции [36]. К первым относятся: выбор шага на основе оценки ошибки и выбор шага на основе сохранения точности и устойчивости. К методам прогноза и коррекции относится метод трапеций, метод Адамса, метод Милна.

Выбор шага на основе оценки погрешности.

Для практической оценки ошибки используют правило Рунге. Обозначим через  соответственно точное решение уравнения и приближенные решения вычисленные в точке xi с шагом h и h/2. Тогда для ошибки метода интегрирования р – го порядка справедлива оценка:

 

(2.3)

 

Выбор шага на основе сохранения точности и устойчивости.

Автоматический выбор шага, конечно, проводится с целью интегрирования с размерами шагов, максимально возможными при условии сохранения необходимой точности и устойчивости.

Устойчивость вычислений в явных методах обеспечивается, если шаг выбрать по формуле:

 

(2.4)

 

где  - максимально допустимый шаг интегрирования.


При этом допустима ошибка аппроксимации  на один шаг интегрирования обычно полагается равною не больше 1% максимально возможного абсолютного значения ymax в ходе расчёта, то есть .

 



2020-02-03 197 Обсуждений (0)
Разработка математической модели программного комплекса для моделирования динамических систем 0.00 из 5.00 0 оценок









Обсуждение в статье: Разработка математической модели программного комплекса для моделирования динамических систем

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (197)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)