Мегаобучалка Главная | О нас | Обратная связь


Гуанидинсодержащие полимеры: синтез и свойства



2020-02-03 242 Обсуждений (0)
Гуанидинсодержащие полимеры: синтез и свойства 0.00 из 5.00 0 оценок




 

Гуанидинсодержащие соединения широко распространены в природе и находят применение в качестве физиологически активных веществ: лекарств, антисептиков, фунгицидов, пестицидов. К ним относятся, например, аминокислота аргинин, фолиевая кислота, многочисленные белки и нуклеиновые кислоты. Гуанидиновая группировка служит активным началом многих лекарственных веществ (сульгин, исмелин, фарингосепт, аспирин) и антибиотиков (стрептомицин и другие).

Высокую биоцидную активность гуанидиновым соединениям придает несущий положительный заряд катион гуанидиния, обеспечивающий электрическое взаимодействие с микробной клеткой.

 

 

В отличие от четвертичных аммониевых соединений, где положительный заряд локализован на одном атоме азота, в катионе гуанидиния заряд распределен между тремя атомами азота. Такое строение реакционного центра обеспечивает необходимый баланс между эффективностью биоцидного действия антисептика в отношении микроорганизмов и токсичностью в отношении теплокровных животных и человека.

Макромолекулярная природа полигуанидинов обеспечивает пролонгированное антимикробное действие препарата: в отличие от низкомомкулярных соединений, антимикробное действие которых сохраняется всего несколько часов (в лучшем случае несколько суток), полимер образует на поверхности биоцидную пленку, которая обеспечивают длительную (несколько месяцев) защиту обработанной поверхности от появления на ней микроорганизмов. Наличие тонкой пленки, образующейся при протирании поверхности раствором 0,1 —1 % концентрации полигуанидина, было экспериментально подтверждено методом рентгеновской фотоэлектронной спектроскопии (РФЭС). Обнаружено, что полимерная пленка сохраняется на обработанной поверхности в течение нескольких месяцев и даже через 6 месяцев сохраняет биоцидную активность [111 ].

Комплекс свойств полигуанидинов позволяет использовать их не только в качестве антисептических средств в медицинской практике, но также в качестве биоцидных добавок в различные материалы (цемент, резину, ткани, бумажную массу, краски и др.), а также вспомогательных материалов в различных технологических процессах.

Первые данные о биоцидных свойствах гуанидиновых производных и полимеров на их основе были опубликованы в патентной литературе [112-113]. В указанных патентах описывается применение подобных соединений в качестве инсектицидов и отмечается, что соответствующие соединения особенно активны против грибковых заболеваний на фруктовых деревьях. В патенте [114] описаны специфические гуанидированные полиамины для применения против патогенных микроорганизмов.

К наиболее сильным из известных гуанидиновых антисептиков относятся «хлоргексидин» (1,6-бис-4,4-хлорфеноксибигуанидогексин) [110], низкомолекулярный полигексаметиленбигуанидин – «вантоцил» [115,116] и «космоцил» [117].

Так, например, хлоргексидин используется в качестве дезинфицирующего средства в виде солей (гидрохлорида, ацетата, глюконата) и широко рекомендуется за рубежом в виде растворов, мазей, присыпок как эффективное дезинфицирующее средство в хирургии для борьбы с внутрибольничными инфекциями, лечения кожных заболеваний и бытовых целей. Однако, следует отметить, что хлоргексидин, вантоцил и космоцил получают по сложной 4-х стадийной технологической схеме, кроме того при их синтезе исходным сырьем служит хлорциан, поэтому технологический процесс дорог и опасен.

В нашей стране был разработан процесс производства полимерного гуанидинового антисептика – полигексаметиленгуанидингидрохлорида (ПГМГ) («метацид», «полисепт») [118, 119], исходя из гексаметилендиамина и гидрохлорида гуанидина:

 

 

В дальнейшем было предложено объединение в одном процессе синтез гуанидингидрохлорида и получение из него ПГМГ [120].

Так как три аминогруппы гуанидингидрохлорида имеют различную реакционную способность, то молекулярную массу и структуру «полисепта» удается регулировать, изменяя условия реакции и содержание гексаметилендиамина в исходной смеси [121]. Так, при сравнительно низких температурах для процесса поликонденсации (120-130°С) в реакцию с гексаметилендиамином вступают преимущественно две аминогруппы гуанидингидрохлорида, образуя хорошо растворимый линейный олигомер с ММ 1,7-12,5´103. При увеличении количества гексаметилендиамина в реакционной смеси сверх одного моля на 1 моль гуанидингидрохлорида и повышении температуры до 180-200°С в реакцию может вступать третья аминогруппа и образуется разветвленный полимер, который имеет ММ 20 - 43´103.

Различные соли ПГМГ (фосфат, глюконат, дегидроцет, сорбат, фторид, сульфат, нитрат, силикат, ацетат, стеарат, олеат, фумарат, сукцинат, адипинат, себацинат) были получены при действии различных кислот или их солей на основание или карбонат ПГМГ [122]. Среди указанных полимерных солей наибольшее практическое значение помимо «полисепта» имеют фосфат «фогуцид» и глюконат. По сравнению с «полисептом», фогуцид менее токсичен и коррозионноактивен.

Поликонденсационные полимеры: «полисепт» и «фогуцид» рекомендованы Минздравом в качестве дезинфицирующего средства в лечебных учреждениях и роддомах [123], а также в ветеринарии [124].

По данным указанным в работе [125, 126] растворы «полисепта» в концентрации 0,1-0,05% вызывают гибель грамположительных и грамотрицательных микроорганизмов: коринебактерий дифтерии (c. Duphtheretiae), золотистого стафилококка (St.aureus), а также St.aibus и St. faekalis, брюшно-тифозной палочки (S.typhi), шигелл Зонне и Флекснера (Shigella Sonnae, Flexneri), кишечной палочки (E.Coli), сальмонелл Бреслау и Гертнера (Salmonella th.murum), вульгарного протея (Proteus Vulgarus), синегнойной палочки (Ps.aeruginosa) в течение 5-25 минут.

В лаборатории поверхностно-активных полимеров и полиэлектролитов ИНХС РАН были синтезированы гуанидинсодержащие мономерные соли на основе дииаллилгуанидина (ДАГ) и органических кислот – уксусной и трифторуксусной (схема 1,2).


 

Проведенные исследования показали, что для данных мономеров скорость полимеризации невысока, и в результате реакции образуются полимерные продукты с невысокими молекулярными массами, что было подтверждено методами ЯМР1Н. То есть, в рассматриваемом случае, несмотря на присутствие в качестве противоиона сильной ТФУК, не происходит, по-видимому, достаточного упрочнения связи α-протона диаллильной группы и вероятность его отрыва, а следовательно и ДПЦ на мономер высоки [127 ]. Такое поведение синтезированных мономеров ДАГА и ДАГТФА было объяснено следующим образом. В исследованных системах катионогенные мономерные соли ДАГА и ДАГТФА в водных растворах могут существовать в виде трех резонансных структур (I-III), из которых лишь одна отвечает необходимому для подавления деградационной передачи цепи на мономер условию - наличию заряда на азоте, связанного с двумя аллильными группами (структура I) (схема 3а).

 

 

Тогда как структуры II и III , скорее всего, образуют стабильные (в том числе и по пространственным факторам) делокализованные системы с участием двух атомов азота и ацетатного (или трифторацетатного) противоиона (IV), либо за счет водородного связывания заряженной аминогруппы делокализованным карбоксилат-ионом (V) (схема 3б)


 

На основании этих предположений был сделан вывод, что при полимеризации мономерных солей (1) и (3) будет в значительной степени сохраняться деградационная передачи цепи на мономер. Для случая X = F (схема 3б) можно было бы ожидать снижения степени деградационной передачи цепи на мономер, так как высокий индукционный эффект (-I) трифторметильной группы должен был бы приводить к снижению устойчивости структур IV и V. Однако ожидаемого эффекта и заметных скоростей полимеризации ДАГТФА не удалось достичь, возможно, как предполагают авторы, еще из-за недостаточной растворимости мономера в исследованных системах [127].

В работах [127] исследовали радикальную полимеризацию мономерных солей метакриловой и акриловой кислоты и гуанидина (МАГ и АГ) и выявлены характерные особенности и кинетические закономерности этих процессов. Показано, что полимерные гуанидинсодержащие соли на основе ненасыщенных кислот способны полимеризоваться по радикальному механизму с образованием высокомолекулярных продуктов с биоцидными свойствами.

Никашиной с сотр.[128] разработан биоцидный сорбент клиноцид, представляющий собой природный цеолит (клиноптилолит-содержащий туф), на поверхности которого с помощью эпихлоргидрина закреплен полигексаметиленгидрохлорид. Клиноцид обладает катионо-обменной емкостью (1.0-1.5 мг-экв/мл), анионообменной емкостью (0.2-0.3 мг-экв/мл) и биоцидными свойствами; при прохождении через колонку с клиноцидом вода одновременно обессоливается и освобождается от бактериального и вирусного загрязнения (эффективность очистки 99-100%).

Таким образом, высокая биоцидная активность полигуанидинов в сочетании с низкой токсичностью, простотой синтеза и доступностью исходных веществ открывает возможность получения на их основе различных композиционных материалов, что расширит области их практического применения.

 




2020-02-03 242 Обсуждений (0)
Гуанидинсодержащие полимеры: синтез и свойства 0.00 из 5.00 0 оценок









Обсуждение в статье: Гуанидинсодержащие полимеры: синтез и свойства

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (242)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)