Мегаобучалка Главная | О нас | Обратная связь


Замкнутые множества. Внутренние, внешние и граничные точки



2020-02-03 390 Обсуждений (0)
Замкнутые множества. Внутренние, внешние и граничные точки 0.00 из 5.00 0 оценок




Определение 1. Подмножество А топологического пространства

(Х, Ф) называется замкнутым, если его дополнение Х \ А открытое множество.

Так как дополнение к дополнению множества А есть снова А, то получаем: множество А открыто в том и только в том случае, когда дополнение к нему замкнуто.

Если (Х, Ф) – антидискретное топологическое пространство, то дополнения к Х и к Æ являются единственными замкнутыми множествами, но учитывая, что

 

Х / Х = Æ, Х / Æ = Х,

 

получаем: Æ и Х – являются также и замкнутыми множествами.

Х и Æ замкнуты (и одновременно открыты) в любом топологическом пространстве (Х, Ф).

Если Ф – дискретная топология, то любое множество замкнуто и открыто.

Если Х – множество действительных чисел и Ф обычная топология, то есть индуцированная естественной метрикой, то множество

 

[  ] = {х |  £ х £ } = Х \ ((– ¥, ) È ( , + ¥))


замкнуто.

Используя формулы де Моргана

 

Х \ È  = Ç (X \ ),

Х \ Ç = È (X \ ),

 

несложно доказывается следующая теорема.

Теорема 1. (Свойства замкнутых множеств)

1. Пересечение любой совокупности замкнутых множеств есть замкнутое множество.

2. Объединение любых двух замкнутых множеств есть замкнутое множество.

Доказательство. Пусть для любого a определено множество

 

F  = X \ ,

 

где - открытое множество в (Х, Ф).

1. F0 = Ç F  = Ç(X \ ) = X \(È ).

Так как È  = G0 Î F, то F0 – замкнуто.

2. F = F1 È F2 = (X \ G1) È (X \ G2) = X \ (G1 Ç G2).

Так как G1 Ç G2 = G Î F, то F – замкнуто.

Теорема 2. Пересечение любого конечного числа открытых множеств является открытым множеством; объединение любого конечного числа замкнутых множеств является замкнутым множеством.

Однако, если в R с обычной топологией рассмотреть множества

 

Gn = ,

то

Gn = [–1, 1],

 

то есть мы указали пример, когда пересечение бесконечного множества открытых множеств оказалось замкнутым.

Пусть (Х, Ф) – топологическое пространство. Открытое множество U называется окрестностью точки х если х Î U (х Î X и U Î Ф).

Определение 2. Точка  называется внутренней точкой некоторого множества H (H Ì X), если существует такая окрестность U точки , что U Ì H. Множество всех внутренних точек множества H обозначается через int H и называется внутренней областью H или внутренностью H.

Определение 3. Точка  называется внешней точкой множества H, если существует такая окрестность V точки , в которой нет точек из H, т.е. V Ì Сх H=Х \ H. Множество всех внешних точек множества H обозначается через ext H и называется внешней областью H.

Определение 4. Точка с называется граничной для множеств H, если в любой окрестности точки с имеются как точки множества H, так и точки не принадлежащие H.

Множество всех граничных точек множества H обозначается через H и называется границей H.

Очевидно:

 

int H È ext H È H = X

int H Ç ext H = ext H Ç H = int Ç H = Æ

int H = ext Cx H, ext H = int Cx H

H =  Cx H

Определение 5. Точка  называется точкой прикосновения множества H, если каждая окрестность точки  имеет с H хотя бы одну общую точку.

Множество всех точек прикосновения множества H называется замыканием множества H и обозначается . Ясно, что  = int H È H и является замкнутым множеством.

Определение 6. Точка Î H называется изолированной точкой множества H, если существует окрестность U точки , такая, что

U Ç H = {}

Определение 7. Если  Î  и не является изолированной для H, то она называется предельной точкой множества H.

Ясно, что в каждой окрестности предельной точки Î H существуют точки множества H, отличные от .

Поскольку замыкание распадается на множество изолированных и предельных точек, а первое всегда содержится в H, то приходим к следующему утверждению:

Теорема 3. Множество H замкнуто тогда и только тогда, когда оно содержит все свои предельные точки, то есть, если

H =

Действительно, если H – замкнуто, то C H = X \ H открыто. Поэтому C H = ext H.

Отсюда получаем

 

H = int H È ∂ H = .

Теорема 4. Если замкнутое множество F содержит множество H, то F содержит и .

Доказательство. Так как H Ì F, то все предельные точки H будут являться предельными и для F, а поэтому они принадлежат F, следовательно

 Ì F.

Следствие. Замыкание множеств H есть пересечение всех замкнутых множеств, содержащих H.

Действительно, согласно теореме 5  принадлежит любому замкнутому множеству, содержащему H, а по теореме 3 - замкнутое множество.

Определение 8. Множество H называется всюду плотным в топологическом пространстве (Х, Ф), если  = X.

Множество А называется нигде не плотным в пространстве (Х, Ф), если дополнение к замыканию А всюду плотно в Х, то есть = Х



2020-02-03 390 Обсуждений (0)
Замкнутые множества. Внутренние, внешние и граничные точки 0.00 из 5.00 0 оценок









Обсуждение в статье: Замкнутые множества. Внутренние, внешние и граничные точки

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (390)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)