Мегаобучалка Главная | О нас | Обратная связь


Средняя ошибка аппроксимации



2015-11-20 9112 Обсуждений (0)
Средняя ошибка аппроксимации 4.92 из 5.00 12 оценок




Величина отклонения теоретического значения результативного признака от фактического значения , взятая по модулю, представляет собой абсолютную ошибку аппроксимации: .

Величина, равная отношению абсолютной ошибки к фактическим значениям результативного признака, выраженная в процентах, называется относительной ошибкой аппроксимации:

Чтобы иметь наиболее полное представление о качестве модели используют среднюю ошибку аппроксимации, которая равна средней арифметической относительных ошибок:

Можно использовать также следующую формулу для определения средней ошибки аппроксимации:

Полученное значение средней ошибки аппроксимации показывает, на сколько процентов в среднем теоретические значения результативного признака отклоняются от фактических значений .

Если полученное значение средней ошибки аппроксимации изменяется в пределах 5-7%, то это свидетельствует о хорошем подборе вида модели к исходным данным.

Если значение аппроксимации 8-10%, то это говорит о повышенной, но допустимой ошибке аппроксимации.

 

Нелинейная регрессия

Различают следующие классы нелинейных регрессий:

1) регрессии, нелинейные относительно включенных в анализ объясняющих переменных , но линейные относительно оцениваемых параметров;

2) регрессии, нелинейные по оцениваемым параметрам.

К первому классу регрессий можно отнести полиномы любых степеней , равностороннюю гиперболу .

Ко второму классу регрессий относятся степенная регрессия , показательная , экспоненциальная .

Нелинейные регрессии по включенным переменным позволяют оценить параметры регрессии с помощью МНК. Например, для оценки параметров полинома третьей степени , достаточно воспользоваться заменой переменной , , в результате чего получим линеаризованную модель: , параметры которой оцениваются методом наименьших квадратов.

Приведение нелинейной модели к линейному виду называется линеаризацией модели. В основном линеаризация осуществляется заменой переменного или с помощью логарифмирования уравнения регрессии (используют ln или lg).

Если задано уравнение параболы , то система нормальных уравнений для определения параметров , , примет вид:

решение которой возможно методом определителей: ; ; ; где - определитель системы, а определители , , - частные определители , полученные заменой столбца свободных членов соответствующим столбцом коэффициентов. В виду симметричности параболы чаще всего используется не вся парабола, а какая-то ее часть.

Для равносторонней гиперболы , заменив , получают линейное уравнение , оценка параметров которого может быть дана МНК. Система нормальных уравнений примет вид:

Регрессии, нелинейные по оцениваемым параметрам, делятся на два типа: нелинейные модели внутренне линейные и нелинейные модели внутренне нелинейные. Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду. Если же нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции.

Например, степенная модель является нелинейной регрессией внутренне линейной, так как при логарифмировании обеих частей уравнения получаем линейную модель , параметры которой можно оценить МНК: . Значение коэффициента регрессии b находят непосредственно из системы нормальных уравнений. Для нахождения значения параметра первоначально из системы находят значение , а затем потенцированием определяют значение параметра: .

Однако, если степенную модель представить в виде , то получится регрессия внутренне нелинейная.

Обратная модель линеаризуется с помощью замены , то есть получим линейную форму модели .

Для преобразования нелинейной функции в линейную возможно и одновременное использование логарифмирования и замены.

Например, для функции необходимо произвести замену , а затем выполнить логарифмирование .

 



2015-11-20 9112 Обсуждений (0)
Средняя ошибка аппроксимации 4.92 из 5.00 12 оценок









Обсуждение в статье: Средняя ошибка аппроксимации

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (9112)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)