Мегаобучалка Главная | О нас | Обратная связь


Тема лекции: Потенциальная энергия упругих систем. Статические неопределимые стержневые системы



2015-12-04 1607 Обсуждений (0)
Тема лекции: Потенциальная энергия упругих систем. Статические неопределимые стержневые системы 0.00 из 5.00 0 оценок




Под внешним воздействием система деформируется. При этом элементы системы перемещаются, а силы, приложенные к элементам системы, совершают работу.

Для получения наиболее общих выводов вводят понятие «обобщенная сила» и «обобщенное перемещение». Под обобщенной силой подразумевают не только сосредоточенную силу, но и любую группу сил. Каждой обобщенной силе соответствует обобщенное перемещение, и наоборот. Так, например, линейному перемещению соответствует сосредоточенная линейная сила, а угловому перемещению (углу поворота элемента) – момент.

Обобщенные силы, равно как и обобщенные перемещения, могут иметь различную размерность, но их произведение всегда имеет размерность работы.

Работа внутренних сил численно равна потенциальной энергии деформации системы, которая возвращает систему в первоначальное состояние после снятия нагрузки. Так как потенциальная энергия W положительна, то

W = – V = T (69)

Определим потенциальную энергию плоской системы, которая состоит из прямых или слегка искривленных стержней. Выделим бесконечно малый элемент dS и приложим к нему внутренние силы N, M и Q, которые по отношению к элементу будут внешними (рис.35).

а – система внутренних сил в элементе; б, в и е – деформированные состояния элемента при растяжении, изгибе и сдвиге.

Рисунок 35 – Cхемы к определению потенциальной энергии плоской системы.

Выразим потенциальную энергию деформации элемента dS через работу внешних для него сил N, M и Q.

Учитывая, что на каждом перемещении (абсолютной деформации) работу производят только соответствующие силы (рис.35, б, в и г), получим основе известных формул сопротивления материалов:

;

; (70)

.

где – коэффициент, учитывающий закон распределения касательных напряжений и зависящий от формы поперечного сечения: для прямоугольников , для прокатных профилей (F – полная площадь сечения , – площадь вертикальной стенки).

Выражение полной потенциальной энергии плоской системы получим путем интегрирования и суммирования выражений (70),т.е.

(71)

Для пространственной стержневой системы, состоящей из прямолинейных стержней, формула потенциальной энергии имеет следующий вид:

, (72)

где первый член учитывает деформации растяжения, второй и третий – деформации изгиба в разных плоскостях, четвертый и пятый - деформации сдвига в разных плоскостях, а последний –деформации кручения.

Из формул (71) и (72) следует, что:

– потенциальная энергия W всегда положительна, так как выражения внутренних сил берутся в квадрате;

– на потенциальную энергию не распространяется принцип независимости действия сил ( ),поскольку потенциальная энергия является не линейной, а квадратичной функцией усилий;

– величина потенциальной энергии не зависит от последовательности загружения, а лишь от начального и конечного состояния упругой системы.



2015-12-04 1607 Обсуждений (0)
Тема лекции: Потенциальная энергия упругих систем. Статические неопределимые стержневые системы 0.00 из 5.00 0 оценок









Обсуждение в статье: Тема лекции: Потенциальная энергия упругих систем. Статические неопределимые стержневые системы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1607)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)