Тема 10.4. Сравнительная оценка параметров эмпирического и нормального распределений. Критерий Пирсона «хи» квадрат
Нормальный характер распределения свидетельствует о количественной однородности статистических данных и об отсутствии каких-либо причин существенным образом определяющих вариацию изучаемого явления. Поэтому статистический анализ нередко начинается с проверки того, как фактически (эмпирически) данные ложатся на идеальную теоретическую кривую или аппроксимируются. То есть сравниваются эмпирические и теоретические данные какой-либо кривой. Это производится путем оценки гипотезы нормального характера распределения. Вероятностные статистические предположения выдвигаются в виде нулевой гипотезы. Отклонения эмпирических данных от «нормальных» носят случайный характер. Оценку нулевой гипотезы в данном случае осуществляют графическим методом или путем расчета специальных обобщающих показателей сходства, называемых критериями согласия. Независимо от выбранного метода генеральные ряды распределения преобразуются в дискретные и стандартизируются.
Пример: Известно, что среднемесячная заработная плата всех рабочих =1402,42 руб., среднеквадратическое отклонение =338,58 руб.
Данные распределения среднемесячной заработной платы:
В связи с тем, что табличные значения рассчитаны для непрерывно изменяющегося признака с дисперсией равной 1, необходимо скорректировать полученные частности на фактическую величину интервала и среднеквадратическое отклонение. , где величина интервала. Так как все интервалы равны , тогда .
Графики не позволяют определить насколько существенны отклонения эмпирических и теоретических значений, поэтому более точным считается способ расчета критерия согласия Пирсона известного под названием, как «хи» квадрат: . В соответствии с формулой, чем сильнее совпадение кривых, тем меньше величина . При отсутствии отклонений , но даже при небольших отклонениях величина зависит от числа слагаемых, то есть от числа групп. Если >0, то необходима его вероятностная оценка. - число степеней свободы и заданная вероятность несущественности отклонений эмпирических данных и теоретических. r – число групп, k - число параметров, которые нельзя изменить. Поскольку фактическое значение (22,63) гораздо больше табличного (5,348) даже для вероятности 0,5, гипотеза о случайном характере отклонений эмпирических данных от теоретических отклоняется.
Популярное: Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (521)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |