Мегаобучалка Главная | О нас | Обратная связь


Сравнение бесконечно больших функций



2015-11-06 2464 Обсуждений (0)
Сравнение бесконечно больших функций 4.67 из 5.00 6 оценок




На первом уроке мы вычислили три предела с неопределённостью :

В перечисленных примерах используется стандартный приём деления числителя и знаменателя на «икс» в старшей степени и всё расписывается подробно. Но правильный ответ легко выяснить ещё до решения!

В первом примере в числителе и знаменателе МЫСЛЕННО отбрасываем все младшие слагаемые:
.

В таких случаях говорят, что функции числителя и знаменателя обладают одинаковым порядком роста. Или короче – числитель и знаменатель одного порядка роста. Действительно, в данном пределе и вверху, и внизу находятся квадратичные функции. Мир, равенство, братство.

Во втором примере аналогично – в числителе и знаменателе МЫСЛЕННО уберём всех малышей:

Здесь знаменатель более высокого порядка, чем числитель. Многочлен 4-ой степени растёт быстрее кубической функции и «перетягивает» предел на ноль.

И, наконец, в пределе карлики тоже идут лесом:

А в этом примере всё наоборот – числитель более высокого порядка, чем знаменатель. Квадратичная функция растёт быстрее линейной и «перетягивает» предел на «плюс бесконечность».

Сделаем краткую теоретическую выжимку. Рассмотрим две произвольные функции , которые определены на бесконечности.

1) Если , где – ненулевая константа, то функции имеют одинаковый порядок роста. Если , то функции называют эквивалентными на бесконечности.

2) Если , то функция более высокого порядка роста, чем .

3) Если , то функция более высокого порядка роста, чем .

! Примечание: при суть выкладок не меняется.

Подчеркиваю ещё раз, что данные факты относятся к произвольным функциям, определённым на бесконечности, а не только к многочленам. Но у нас ещё непаханое поле полиномов, поэтому, продолжаем работать с ними… да вы не грустите, для разнообразия я добавлю корней =)

Пример 1

Найти предел

В наличии неопределённость и приём решения уже знаком – нужно разделить числитель и знаменатель на «икс» в старшей степени.

Старшая степень числителя равна двум. Знаменатель…. Как определить старшую степень, если многочлен под корнем? МЫСЛЕННО отбрасываем все слагаемые, кроме самого старшего: . Константу тоже отбрасываем и выясняем старшую степень знаменателя: . Она тоже равна двум. Таким образом, числитель и знаменатель одного порядка роста, а значит, предел равен конечному числу, отличному от нуля.

Почему бы сразу не узнать ответ? В числителе и знаменателе МЫСЛЕННО отбрасываем все младшие слагаемые: . Таким образом, наши функции не только одного порядка роста, но ещё и эквивалентны на бесконечности.

Оформляем решение:

Разделим числитель и знаменатель на

В действительности пару шагов можно пропустить, просто я подробно расписал, как в знаменателе под корень вносится .

Пример 2

Найти предел

Это пример для самостоятельного решения. Постарайтесь провести рассуждения по образцу первого примера. Также заметьте, что здесь неопределённость , что необходимо отразить в решении. Примерный образец чистового оформления примера в конце урока.

Во избежание недочёта, всегда анализируйте, какая неопределённость получается в пределах рассматриваемого вида. Помимо неопределённости может встретиться неопределённость либо . Во всех четырёх случаях числитель и знаменатель необходимо разделить на «икс» в старшей степени.

Пример 3

Найти предел

Слишком трудный предел? Лёгкий испуг от хлопушки. Главное, грамотно управиться с радикалами.

Проведём предварительный анализ:

Сначала выясним старшую степень числителя. Там сумма двух корней. Под корнем отбросим младшее слагаемое: и уберём константу: . Под корнем отбросим все младшие слагаемые: .
, значит, старшая степень числителя: .

Разбираемся с нижним этажом. Под корнем отбрасываем константу: . У многочлена старшая степень равна двум.
, значит, старшая степень знаменателя: .
Кстати, заметьте, что корень более высокого порядка роста, чем , поэтому весь знаменатель будет стремиться к «плюс бесконечности».

Сравниваем старшие степени: , следовательно, числитель более высокого порядка роста, чем знаменатель, и сразу можно сказать, что предел будет равен бесконечности.

Оформляем решение, я распишу его максимально подробно:

Разделим числитель и знаменатель на «икс» в старшей степени: :


Действия в числителе прозрачны, закомментирую знаменатель. У дроби «разнокалиберные» корни, и квадратный корень необходимо «подогнать» под кубический корень . Составим и решим уравнение: . Таким образом: .

Ну и на всякий случай напоминаю формулу , по которой выполняется деление:

Другие члены знаменателя:

Правила действий с корнями можно найти на странице Математические формулы и таблицы в методичке Горячие формулы школьного курса математики. Также на действиях с радикалами я подробно останавливался при нахождении производных.

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).



2015-11-06 2464 Обсуждений (0)
Сравнение бесконечно больших функций 4.67 из 5.00 6 оценок









Обсуждение в статье: Сравнение бесконечно больших функций

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2464)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)