Мегаобучалка Главная | О нас | Обратная связь


Теорема 1. Формула Грина.



2019-10-11 197 Обсуждений (0)
Теорема 1. Формула Грина. 0.00 из 5.00 0 оценок




Пусть в области , граница которого - замкнутый контур , являющийся односвязным множеством, задано плоское векторное поле .

Тогда  верна такая формула: .

То есть, работа силы по границе области равна двойному интегралу от величины  по этой плоской области.

Доказательство (ДОК 1). Спроецируем область на ось Ох, обозначим границы проекции: точки . Сама граница области тогда условно подразделяется на две линии, снизу , а сверху . Чтобы движение по замкнутому контуру происходило против часовой стрелки, надо по  двигаться слева направо, а по  справа налево.

 

Рассмотрим подробнее интеграл от функции  по границе области. В соответствии со всем сказанным, он может быть записан так: . Но во втором интеграле можно изменить  на , сменив знак.

 и их можно объединить

 =

разность, которая внутри интеграла, является результатом применения формулы Ньютона-Лейбница по переменной

запишем это в виде: .

Но если формула Ньютона-Лейбница применяется к , значит,  это первообразная по , а она очевидно, является первообразной от своей производной . То есть: 

 =  а этой как раз и есть двойной интеграл по области D.

 = .

Аналогично можно спроецировать область D на ось Оу, допустим проекция займёт некоторый отрезок . Левую и правую линии, составляющие замкнутый контур, обозначим  и . Правая здесь будет  (она дальше от оси Оу).

Тогда  =  =  =

 =  =

Сложим два полученных равенства и получается двойной интеграл

.

 

Пример. Решим тот же самый пример, что рассматривали недавно, работа поля   при движении точки по единичной окружности, но сделаем это теперь по формуле Грина.

  . Тогда  =  =  где D - круг радиуса 1. Тогда интеграл от 1 это его площадь.  =  = .

 

Потенциальные поля

 

Скалярное поле, или скалярная функция: .

Векторная функция, которая отображает  называется векторным полем.

Заметим, что градиент скалярной функции - это векторная функция:  

, ,

То есть, по скалярному полю всегда можно построить некоторое векторное.

Пример: . Тогда .

 

       Обратная задача: если даны некоторые 3 скалярные функции, т.е. векторное поле, всегда ли они являются частными производными какой-то единой скалярной функции? Оказывается, нет.

Определение. Если существует такая скалярная функция , что выполняется , , , (то есть их общая первообразная), то векторное поле называется потенциальным, а функция  называется потенциалом  поля .

 

Кстати, если  - потенциал, то  - тоже потенциал, ведь , , .

Потенциал определяется с точностью до константы (точно так же как и первообразная). Именно поэтому в физике важна именно разность потенциалов, а не сам потенциал.

 

Примеры.

Пример не потенциального поля.

. Первообразная от 1 компоненты по  это , однако первообразная по от второй компоненты совсем другая:

, они не совпадают.

Пример потенциального поля.

. Его потенциал: .

 

Далее нам надо научиться выяснять 2 вопроса:

1) выяснять, является ли поле потенциальным.

2) вычислять потенциал, если оно потенциально.

Теорема 2. Криволинейный интеграл 2 рода не зависит от пути  циркуляция по замкнутому контуру равна 0.



2019-10-11 197 Обсуждений (0)
Теорема 1. Формула Грина. 0.00 из 5.00 0 оценок









Обсуждение в статье: Теорема 1. Формула Грина.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (197)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.029 сек.)