Мегаобучалка Главная | О нас | Обратная связь


Доказательство (ДОК 4).



2019-10-11 185 Обсуждений (0)
Доказательство (ДОК 4). 0.00 из 5.00 0 оценок




1) Необходимость. Пусть поле потенциально. Тогда  являются производными от какой-то общей функции , т.е. , .  тогда , . Но смешанные частные производные 2-го порядка совпадают, значит, = .

а следовательно, = .

2) Достаточность. Здесь мы будем использовать формулу Грина, которую доказали ранее, а там фактически неявно это и предполагали при записи двойного интеграла, когда для  рассматривался отрезок , то есть такая ситуация, как для кольца, не рассматривается, а только множества без внутренних пустот.

Если производная матрица симметрична, то  (в других обозначениях = ). Тогда , и двойной интеграл по любой плоской области равен 0: .

Но ведь тогда для любого замкнутого контура получается, что по формуле Грина, если двойной интеграл по его внутренней области 0, то и циркуляция по границе тоже 0:

 = 0,

а если для любого контура циркуляция 0, то поле потенциально, что следует из теорем 1 и 2, доказанных ранее.

В 3-мерном случае требуется совпадение трёх пар производных, доказательство показано пока для 2-мерного случая, чтобы использовать формулу Грина.

 

Алгоритм нахождения потенциала.

1. Выяснить потенциальность поля, проверив симметричность производной матрицы (она сотоит из всех частных производных: от всех компонент векторного поля по всем переменным).

2. Найти потенциал, как скалярную функцию, равную криволинейному интегралу от фиксированной точки до произвольной.

Как правило, в качестве «начальной»  фиксированной точки рассматривают начало координат, если же в функциях присутствуют к примеру  или , то можно взять в качестве начальной точку (1,1) а не (0,0).

Путь от начальной точки до может быть по любой кривой, но практически лучше по ломаной, состоящей из отрезков, параллельных осям координат. Сначала от (0,0) к (x,0) а затем 2-е звено до точки (x,y).

Пример. Доказать, что поле  потенциально и найти потенциал.

Решение. Шаг 1. Сначала найдём производную матрицу, вычислив все частные производные по всем переменным:

 = . Мы видим, что она симметрична. Значит, поле потенциально.

Шаг 2. Найдём криволинейный интеграл от (0,0) до , соединив с помощью ломаной. Лучше всего даже обозначить конечную точку , чтобы не путать обозначение переменной, по которой ведётся интегрирование, и верхнего предела. Вычислив , затем мы учтём тот факт, что эта точка была произвольной, и сможем записать уже просто .

 разбивается на сумму двух интегралов, по каждому участку ломаной, причём на каждом из них обнуляется один из двух дифференциалов: на горизонтальном отрезке меняется только , а тогда , на вертикальном меняется , тогда .

 =  

в обоих интегралах формально присутствуют оба слагаемых, но одно из них обнуляется, поэтому выглядит далее так, как будто распределилось по одному слагаемому в каждый интеграл.

 в первом фиксировано , а на втором участке переменная  уже достигла  и далее не меняется, поэтому там .

Для данного конкретного примера получается

 =   =   = .

Итак, , тогда можно сказать, что .

Проверка. , .

 


Глава 2.



2019-10-11 185 Обсуждений (0)
Доказательство (ДОК 4). 0.00 из 5.00 0 оценок









Обсуждение в статье: Доказательство (ДОК 4).

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (185)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)