Мегаобучалка Главная | О нас | Обратная связь


Гибкость полимерных цепей.



2019-11-13 231 Обсуждений (0)
Гибкость полимерных цепей. 0.00 из 5.00 0 оценок




Любая полимерная макромолекула обладает гибкостью, но механизм гибкости у разных полимеров разный.

Гибкость свободно-сочлененной цепи обусловлена шарнирными сочленениями между жесткими сегментамит.е вся гибкость сосредоточена в точках сочленений. Этот так называемый свободно-сочлененный механизм гибкости наиболее прост для описания, но химически его реализовать трудно, и встречается он редко. Тем не менее, существенной гибкостью обладают все достаточно длинные полимерные цепи, и причина этого заключена как раз в большой их длине.

Допустим, что абсолютному минимуму энергии соответствует прямолинейная конформация цепи и что все звенья и связи по своей химической природе очень жесткие, так что тепловая энергия возбуждения приводит лишь к малой деформации их стереохимической структуры. При малых деформациях атомный каркас молекулы можно рассматривать как классическую упругую конструкцию, т.е. для полимера – как упругую однородную нить, подчиняющуюся при деформации закону Гука. Такую модель полимера цепи называют персистентной или червеобразной моделью.

Для описания конформационных свойств жесткоцепных молекул наиболее подходящей является модель персистентной, или червеобразной цепи Кратки-Порода, в которой в отличие от свободно-сочлененной цепи Куна учитывается ориентационное близкодействие элементов, составляющих цепь.

В основе модели Порода (так же как и в модели Куна) лежит цепь длиной L, состоящая из n прямолинейных участков длиной ΔL, так что L=nΔL .Однако в отличие от свободно-сочлененной цепи пространственные ориентации соседних элементов здесь не вполне взаимно независимы – направление первого элемента в определенной мере передается по цепи. Корреляция между элентами выражается в том, что среднее (по всем конформациям) значение<cos угла между соседними элементами не равно нулю и одинаково для всех элементов цепи (в случае свободно-сочлененной цепи k=0).

Таким образом, совокупность величин ΔL и k является мерой ориентационного близкодействия, т.е. корреляции для персистенции в цепи. В итоге, угол между элементами 1 и n определяется соотношением

                 (9.1)

здесь a – длина персистенции.

Если, оставляя постоянными значения L и a, перейти к пределу ΔL→0 (тогда ), то изломанная персистентная цепь превращается в непрерывную червеобразную цепь, которая определяется соотношением

(9.2)

Таким образом, кривизна червеобразной кривой одинакова во всех ее точках, определяясь величиной , тогда как направления искривлений в этих точках хаотичны. Иными словами, червеобразную цепь можно охарактеризовать как пространственную линию постоянной кривизны.

По сравнению с идеальной макромолекулой, свойства реальных полимерных систем с объемными взаимодействиями намного разнообразнее. Именно они представляют наибольший интерес и с теоретической, и с практической точки зрения. Однако, как правило, прямому теоретическому исследованию из первых принципов объемные эффекты не поддаются. В этой ситуации, как всегда в теоретической физике, решающую роль приобретает выбор удачных моделей исследуемого объекта и разработка соответствующих модельных представлений.

Конформационные свойства цепных молекул, рассмотренные выше, обсуждались в предположении, что взаимодействия между элементами цепи, определяющие ее равновесную жесткость, имеют характер близкодействия, т.е. осуществляются между соседними или близкими элементами в цепи. Это подразумевается самим представлением о существовании персистенции цепи.

Однако, поскольку всякая реальная цепная молекула имеет большую или меньшую гибкость, при ее тепловом движении всегда возможны случайные сближения атомов и групп, значительно удаленных друг от друга по цепи. При таких сближениях неизбежно возникновение взаимодействия между сблизившимися элементами цепи, имеющего характер их взаимного отталкивания, тем большего, чем больший эффективный объем занимает взаимодействующая пара элементов ("исключенный объем"). Эти взаимодействия, являющиеся взаимодействиями дальнего порядка, принято называть эффектами исключенного объема, поскольку в их основе лежит невозможность для двух элементов цепи одновременно занимать в пространстве один и тот же элемент объема. Эффекты исключенного объема возмущают конформациюклубкообразной молекулы, приводя (в силу возникающих отталкиваний) к увеличению средних расстояний между ее элементами, в том числе и к увеличению и (радиус инерции цепи). Количественно эти возмущения характеризуют коэффициентами αh и αR линейного увеличения размеров молекулярного клубка, определяемыми соотношениями

     (9.3)

      (9.4)

Здесь и – средний квадрат расстояния между концами цепи и ее радиус инерции в отсутствие объемных эффектов; и - те же величины, возмущенные объемными эффектами.

Конформации реальных полимерных молекул изучаются в разбавленных растворах, где объемные эффекты существенно зависят от взаимодействий молекул полимера с молекулами растворителя и для одного и того же полимера могут быть весьма различны в различных растворителях. Подбором достаточно "плохого" растворителя и соответствующей температуры ("θ-температуры") влияние конечного объема мономерной единицы можно скомпенсировать взаимным притяжением единиц цепи. В этих условиях эффекты исключенного объема отсутствуют, в равенствах (9.3, 9.4) коэффициенты . С улучшением термодинамического качества растворителя и соответствующим усилением взаимодействий полимер-растворитель притяжение между элементами цепи не в состоянии компенсировать их отталкивания, эффект исключенного объема увеличивается и α становится больше единицы. Причем возмущенные размеры молекул и растут быстрее, чем пропорционально длине цепи L. В итоге получаем в грубом приближении

(9.5)

где е > 0.

Также стоит отметить, что при характеристике конформационных свойств полимерных молекул в разбавленных растворах учет влияния объемных эффектов имеет важнейшее значение, так как размеры этих молекул в хороших растворителях могут в несколько раз превосходить их невозмущенные размеры. Поэтому количественное определение параметров равновесной жесткости цепей неизбежно связано с исключением влияния объемных эффектов путем использования θ-растворителей или применением процедур экстраполяции экспериментальных данных на область низких молекулярных весов. Стоит также отметить, что влияние эффектов исключенного объема на конфигурацию молекул жесткоцепных полимеров значительно слабее, чем в случае гибкоцепных полимеров. Это исходит из того факта, что меньшая свернутость цепи жесткоцепной молекулы в растворе естественно должна уменьшать вероятность контактов между ее элементами, удаленными по цепи.

 



2019-11-13 231 Обсуждений (0)
Гибкость полимерных цепей. 0.00 из 5.00 0 оценок









Обсуждение в статье: Гибкость полимерных цепей.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (231)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)