Тема 2.2. Государственная система промышленных приборов и средств автоматизации, методы технической диагностики
Государственная система промышленных приборов и средств автоматизации (ГСП) создана с целью обеспечения техническими средствами систем контроля, регулирования и управления технологическими процессами в различных отраслях народного хозяйства. Объектами исследований в технической диагностике являются реальные технические системы. Их теоретический анализ предполагает определенную идеализацию объекта, при которой выделяют существенные свойства реальных систем и не учитывают второстепенные, т. е. реальные системы заменяют моделями. Таким образом, задачи технической диагностики заключаются в изучении объектов диагностики, построении и анализе их моделей, сборе и обработке статического материала о поведении объекта и его диагностике, разработке средств и методик технической диагностики. Классификация средств измерений по выполняемым функциям и назначению Средства измерения могут быть классифицированы по видам измерений · для измерения давления; · для измерения геометрических величин; · для измерения механических величин; · для измерения параметров потока, расхода, уровня и объема; · для физико-химических измерений; · для температурных и теплофизических измерений; · для измерения времени и частоты; · для измерения электрических величин; · для радиотехнических измерений; · для магнитных измерений; · для акустических измерений; · для оптических и оптико-физических измерений; · для измерения ионизирующих излучений. Кроме того, средства измерения классифицируются по их месту в поверочной схеме в соответствии с рекомендациями РМГ 29-99 «Метрология. Основные требования и определения»: 1. первичный эталон — эталон, обеспечивающий воспроизведение единицы с наивысшей в стране точностью (по сравнению с другими эталонами той же единицы); 2. вторичный эталон — эталон, получающий размер единицы непосредственно от первичного эталона данной единицы; 3. рабочий эталон — эталон, предназначенный для передачи размера единицы рабочим средствам измерения; 4. рабочее средство измерения — предназначенное для измерений техническое средство, имеющее нормированные метрологические характеристики, воспроизводящее и/или хранящее единицу физической величины, размер которой принимается неизменным (в пределах установленной погрешности) в течение известного интервала времени.
Класс точности это обобщенная характеристика средства измерения, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность выполняемых с их помощью измерений. Классы точности регламентируются стандартами на отдельные виды средств измерения с использованием метрологических характеристик и способов их нормирования. На средства измерения, для которых существенное значение имеет динамическая погрешность, классы точности не устанавливаются. Для остальных средств измерения обозначение классов точности вводится в зависимости от способов задания пределов допускаемой основной погрешности. Классы точности обозначаются римскими цифрами или буквами латинского алфавита для средств измерения, пределы допускаемой погрешности которых задаются в форме графиков, таблиц или сложных функций входной, измеряемой или воспроизводимой величины. К буквам при этом допускается присоединять индексы в виде арабской цифры. Чем меньше пределы допускаемой погрешности, тем ближе к началу алфавита должна быть буква и тем меньше цифра. В соответствии с документом МИ 2314-00 «Кодификатор групп средств измерений» существует также классификация средств измерений: по назначению (диагностические, прогнозирующие, контрольные и испытательные); по связи с объектом (встроенные и внешние); по виду выходного сигнала (аналоговые, цифровые и аналогово-цифровые). Государственная система промышленных приборов и средств автоматизации Технические средства автоматизации приборы, устройства и технические системы, предназначенные для автоматизации производства. Они обеспечивают автоматическое получение, передачу, преобразование, сравнение и использование информации в целях контроля и управления производственными процессами. Системный подход к построению и использованию ТСА (их группировка и унификация по функциональному, информационному и конструктивно-технологическому признакам) позволил объединить все технические средства автоматизации в рамках Государственной системы промышленных приборов и средств автоматизации – ГСП (рис. 32). На ранних этапах создания средств автоматики в различных организациях и на предприятиях разрабатывалось множество различных приборов измерения и контроля со сходными техническими характеристиками, однако при этом не учитывалась возможность совместной работы приборов различных производителей. Это приводило к увеличению стоимости разработок сложных систем и тормозило широкое внедрение средств автоматизации. Поэтому в 1960 г. было принято решение о создании ГСП, а с 1961 г. начались работы по ее реализации.
Рис. 32. Структура технических средств ГСП
В настоящее время ГСП представляет собой эксплуатационно-, информационно-, энергетически-, метрологически- и конструктивно- организованную совокупность изделий, предназначенных для использования в качестве средств автоматических и автоматизированных систем контроля, измерения, регулирования технологических процессов, а также информационно-измерительных систем. ГСП стала технической базой для создания автоматических систем управления технологическими процессами (АСУ ТП) и производством (АСУП) в промышленности. Ее развитие и применение способствовали формализации процесса проектирования АСУ ТП и переходу к машинному проектированию. В основу создания и совершенствования ГСП положены следующие системотехнические принципы: типизация и минимизация многообразия функций автоматического контроля, регулирования и управления; минимизация номенклатуры технических средств; блочно-модульное построение приборов и устройств; агрегатное построение систем управления на базе унифицированных приборов и устройств; совместимость приборов и устройств. Устройства ГСП по роду используемой энергии носителя сигналов в канале связи, применяемой для приёма и передачи информации и команд управления, делятся на электрические, пневматические и гидравлические. Устройства, питающиеся при эксплуатации энергией одного рода, образуют структурную группу в ГСП или «ветвь». АСУ ТП, комплектуемые из приборов электрической ветви, имеют преимущества по чувствительности, точности, быстродействию. Применение интегральных микросхем способствует уменьшению габаритов, сокращению потребляемой энергии, повышению их надёжности. Приборы пневматической ветви характеризуются безопасностью применения в легковоспламеняемых и взрывоопасных средах, высокой надёжностью в тяжелых условиях работы. Гидравлические приборы позволяют получить точные перемещения исполнительных механизмов при больших усилиях. По функциональному признаку все изделия ГСП разделены на следующие четыре группы устройств: - получения информации о состоянии процесса или объекта - датчики; нормирующие преобразователи, формирующие унифицированный сигнал связи; приборы, обеспечивающие представление измерительной информации в форме, доступной для непосредственного восприятия наблюдателем, и устройства алфавитно-цифровой информации, вводимой оператором вручную; - приема, преобразования и передачи информации по каналам связи - коммутаторы измерительных цепей, преобразователи сигналов и кодов, шифраторы и дешифраторы, согласующие устройства, средства телесигнализации, телеизмерения и телеуправления. Эти устройства используют для преобразования как измерительных, так и управляющих сигналов; - преобразования, хранения и обработки информации, формирования команд управления - анализаторы сигналов, функциональные и операционные преобразователи, логические устройства и устройства памяти, задатчики, регуляторы, управляющие вычислительные устройства и комплексы использования командной информации; - исполнительные устройства (электрические, пневматические, гидравлические или комбинированные исполнительные механизмы), усилители мощности, вспомогательные устройства к ним, а также устройства представления информации Минимизация номенклатуры средств контроля и управления реализуется на основе двух принципов унификации устройств одного функционального назначения на основе параметрического ряда этих изделий и агрегатирования комплекса технических средств для решения крупных функциональных задач В настоящее время разработаны параметрические ряды датчиков давления, расхода, уровня, температуры и электроизмерительных приборов. Тем не менее продолжается их оптимизация по технико-экономическим показателям, например по критерию минимума суммарных затрат на удовлетворение заданных потребностей. Этот критерий основан на противоречии между интересами потребителя и изготовителя: чем меньше в ряду приборов, тем меньше затраты на их разработку и освоение, и тем большими партиями они выпускаются, что также снижает затраты изготовителя. Увеличение числа приборов в ряду дает экономию потребителю за счет более эффективного использования их возможностей или более точного соблюдения режимов технологических процессов Агрегатные комплексы (АК) представляют собой совокупность технических средств, организованных в виде функционально-параметрических рядов, охватывающих требуемые диапазоны измерения в различных условиях эксплуатации и обеспечивающих выполнение всех функций в пределах заданного класса задач. Принцип агрегатирования в ГСП применяют очень широко. Унифицированная базовая конструкция датчиков теплоэнергетических величин с унифицированными пневматическим и электрическим сигналами была создана всего из 600 наименований деталей, при этом было получено 136 типов и 863 модификации этих датчиков Заложенные в ГСП общие для всех изделий понятия совместимости можно сформулировать следующим образом. Информационная совместимость - совокупность стандартизированных характеристик, обеспечивающих согласованность сигналов связи по видам и номенклатуре, их информативным параметрам, уровням, пространственно-временным и логическим соотношениям и типу логики. Для всех изделий ГСП приняты унифицированные сигналы связи и единые интерфейсы, которые представляют собой совокупность программных и аппаратных средств, обеспечивающих взаимодействие устройств в системе. Конструктивная совместимость - совокупность свойств, обеспечивающих согласованность конструктивных параметров и механическое сопряжение технических средств, а также выполнение эргономических норм и эстетических требований при совместном использовании. Эксплуатационная совместимость - совокупность свойств, обеспечивающих работоспособность и надежность функционирования технических средств при совместном использовании в производственных условиях, а также удобство обслуживания, настройки и ремонта. Метрологическая совместимость - совокупность выбранных метрологических характеристик и свойств средств измерений, обеспечивающих сопоставимость результатов измерений и возможность расчета погрешности результатов измерений при работе технических средств в составе систем. По роду используемой энергии носителя информационных сигналов устройства ГСП делятся на электрические, пневматические, гидравлические, а также устройства, работающие без использования вспомогательной энергии - приборы и регуляторы прямого действия. Для того чтобы обеспечить совместную работу устройств различных групп, применяют соответствующие преобразователи сигналов. В АСУ наиболее эффективно комбинированное применение устройств различных групп. Достоинства электрических приборов общеизвестны. Это, в первую очередь, высокая чувствительность, точность, быстродействие, удобство передачи, хранения и обработки информации. Пневматические приборы обеспечивают повышенную безопасность при применении в легко воспламеняемых и взрывоопасных средах, высокую надежность в тяжелых условиях работы и агрессивной атмосфере. Однако они уступают электронным приборам по быстродействию, возможности передачи сигнала на большое расстояние. Гидравлические приборы позволяют получать точные перемещения исполнительных механизмов и большие усилия. В технической документации наиболее широко используется такой классификационный признак, как тип изделия: совокупность изделий одинакового функционального назначения и принципа действия, сходных по конструктивному исполнению и имеющих одинаковые главные параметры. В состав одного типа может входить несколько типоразмеров и модификаций или исполнений изделия. Типоразмеры изделия одного типа различаются значениями главного параметра (обычно выделяются для однофункциональных изделий). Модификация совокупность изделий одного типа, имеющих определенные конструкционные особенности или определенное значение неглавного параметра. Под исполнением обычно понимают изделия одного типа, имеющие определенные конструктивные особенности, влияющие на их эксплуатационные характеристики, например тропическое или морское. Обмен информацией между техническими средствами ГСП реализуется при помощи сигналов связи и интерфейсов. В АСУ наиболее распространены электрические сигналы связи, достоинствами которых являются высокая скорость передачи сигнала, низкая стоимость и доступность источников энергии, простота прокладки линий связи. Пневматические сигналы применяют в основном в нефтяной, химической и нефтехимической промышленности, где необходимо обеспечить взрывобезопасность и не требуется высокое быстродействие. Гидравлические сигналы в основном применяют в гидравлических следящих системах и устройствах управления гидравлическими исполнительными механизмами. Информационные сигналы могут быть представлены в естественном или унифицированном виде. Естественным сигналом называется сигнал первичного измерительного преобразователя, вид и диапазон изменения которого определяются его физическими свойствами и диапазоном изменения измеряемой величины. Обычно это выходные сигналы измерительных преобразователей, чаще всего электрические, которые можно передать на небольшое расстояние (до нескольких метров). Вид носителя информации и диапазон изменения унифицированного сигнала не зависят от измеряемой величины и метода измерения. Обычно унифицированный сигнал получают из естественного с помощью встроенных или внешних нормирующих преобразователей. При создании сложных систем, особенно на базе микропроцессорных устройств и вычислительных средств, обмен информацией между техническими средствами верхнего уровня осуществляется с помощью интерфейсов. Интерфейс - это совокупность программных и аппаратных средств, устанавливающих и реализующих взаимодействие устройств, входящих в систему, и предназначенных для сбора, переработки и использования информации. Интерфейс состоит из программной и аппаратной частей. Программная (информационная) часть определяет протокол (порядок) обмена сигналами и информацией (алгоритмы и временные диаграммы). Аппаратная часть (интерфейсные карты, платы) позволяет осуществлять информационный обмен управляющими, адресными, известительными и другими сигналами между функциональными модулями.
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1706)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |